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Preface to the First Edition

A drift chamber is an apparatus for measuring the space coordinates of the trajectory
of a charged particle. This is achieved by detecting the ionization electrons produced
by the charged particle in the gas of the chamber and by measuring their drift times
and arrival positions on sensitive electrodes.

When the multiwire proportional chamber, or ‘Charpak chamber’ as we used to
call it, was introduced in 1968, its authors had already noted that the time of a signal
could be useful for a coordinate determination, and first studies with a drift cham-
ber were made by Bressani, Charpak, Rahm and Zupančič in 1969. When the first
operational drift-chamber system with electric circuitry and readout was built by
Walenta, Heintze and Schürlein in 1971, a new instrument for particle experiments
had appeared. A broad study of the behaviour of drifting electrons in gases began in
laboratories where there was interest in the detection of particles.

Diffusion and drift of electrons and ions in gases were at that time well-established
subjects in their own right. The study of the influence of magnetic fields on these
processes was completed in the 1930s and all fundamental equations were con-
tained in the article by W.P. Allis in the Encyclopedia of Physics [ALL 56]. It
did not take very long until the particle physicists learnt to apply the methods of
the Maxwell–Boltzmann equations and of the electron-swarm experiments that had
been developed for the study of atomic properties. The article by Palladino and
Sadoulet [PAL 75] recorded some of these methods for use with particle-physics
instruments.

F. Sauli gave an academic training course at CERN in 1975/76, in order to inform
a growing number of users of the new devices. He published lecture notes [SAU 77],
which were a major source of information for particle physicists who began to work
with drift chambers.

When the authors of this book began to think about a large drift chamber for
the ALEPH experiment, we realized that there was no single text to introduce us to
those questions about drift chambers that would allow us to determine their ultimate
limits of performance. We wanted to have a text, not on the technical details, but
on the fundamental processes, so that a judgement about the various alternatives
for building a drift chamber would be on solid ground. We needed some insight
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vi Preface to the First Edition

into the consequences of different geometries and how to distinguish between the
behaviour of different gases, not so much a complete table of their properties. We
wanted to understand on what trajectories the ionization electrons would drift to the
proportional wires and to what extent the tracks would change their shape.

Paths to the literature were also required – just a few essential ones – so that an
entry point to every important subject existed; they would not have to be a compre-
hensive review of ‘everything’.

In some sense we have written the book that we wanted at that time. The text
also contains a number of calculations that we made concerning the statistics of
ionization and the fundamental limits of measuring accuracy that result from it,
geometrical fits to curved tracks, and electrostatics of wire grids and field cages.
Several experiments that we undertook during the construction time of the ALEPH
experiment found their way into the book; they deal mainly with the drift and diffu-
sion of electrons in gases under various field conditions, but also with the statistics
of the ionization and amplification processes.

The book is nonetheless incomplete in some respects. We are aware that it lacks
a chapter on electronic signal processing. Also some of the calculations are not yet
backed up in detail by measurements as they will eventually have to be. Especially
the parameter Neff of the ionization process which governs the achievable accuracy
should be accurately known and supported by measurements with interesting gases.
We hope that workers in this field will direct their efforts to such questions. We
would welcome comments about any other important omissions.

It was our intention to make the book readable for students who are interested
in particle detectors. Therefore, we usually tried to explain in some detail the ar-
guments that lead up to a final result. One may say that the book represents a cross
between a monograph and an advanced textbook. Those who require a compendious
catalogue of existing or proposed drift chambers may find useful the proceedings of
the triannual Vienna Wire Chamber Conferences [VIE] or of the annual IEEE Sym-
posia on Instrumentation for Nuclear Science [IEE].

Parts of the material have been presented in summer schools and guest lectures,
and we thank H.D. Dahmen (Herbstschule Maria Laach), E. Fernandez (Universita
Autonoma, Barcelona) and L. Bertocchi (ICTP, Trieste) for their hospitality.

We thank our colleagues from the ALEPH TPC group, and especially J. May
and F. Ragusa, for many stimulating discussions on the issues of this book. We are
also obliged to H. Spitzer (Hamburg) who read and commented on an early version
of the manuscript. Special thanks are extended to Mrs. Heininger in Munich who
produced most of the drawings.

Geneva W. Blum
1 April 1993 L. Rolandi



Preface to the Second Edition

The first edition has continuously served many students and researchers in the field.
Now we have enlarged and improved the book, essentially in three ways: (1) The
chapter on electronic signal processing was added, and (2) the chapter on the cre-
ation of the signal was rewritten and based on the principle of current induction.
This was made possible because our team was complemented with a new young
co-author (W.R.). (3) Also there are various modernizations throughout the book in-
cluding some of the recent chambers capable to measure tracks at very high fluences
that one could not imagine 15 years ago. Four of the chapters were left untouched.
The development of drift chambers in the last 15 years was driven by the idea that
their performance should be pushed towards the limits of the laws of physics. The
concept of the book matches very well this trend because it is the basic principles
of drift chambers rather than their technical design solutions that are in focus. The
most modern design solutions, among them the ones developed for the experiments
of the Large Hadron Collider, can be found e.g. in the proceedings of the IEEE
Symposia [IEE] and of the Vienna Wire Chamber Conferences [VIE].

During the last two decades, the development and optimization of drift cham-
bers has increasingly relied on simulation programs, which in some sense ’encode’
the physics processes described in this book. The program GARFIELD, written by
Rob Veenhof, is the most widely used tool for drift chamber simulation. It allows
calculation of electric fields, electron and ion drift lines, induced signals, electro-
static wire displacements and many more features of drift chambers. For calculation
of the primary ionization of fast particles in gases, the program HEED, written by
Igor Smirnov, is widely used. A very popular program for calculation of electron
transport properties in different gas mixtures is the program MAGBOLTZ, writ-
ten by Steve Biagi. MAGBOLTZ and HEED are directly interfaced to GARFIELD,
which therefore allows a complete simulation of the drift chamber processes, from
the passage of the charged particle to the detector output signal. Clearly a thorough
understanding of drift chambers, which is subject of this book, is a necessary pre-
condition for efficient use of these simulation programs.

Despite the development of the fine grained silicon detectors which now out-
perform the wire chambers near the interaction point, the large detector volumes
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viii Preface to the Second Edition

surrounding modern experiments have to rely on drift chambers because of their
simplicity and also because their measurement accuracy in relation to their size is
better than it is in any other instrument. Time Projection Chambers with electron
drift lengths up to 2.5 m are the most important tools for studying heavy ion col-
lisions, because of their very low material budget, channel number economy and
particle identification capabilities. TPCs are also studied as principle detectors for
future electron colliders. 36 years after the first working drift chamber, these instru-
ments are still going strong.

Geneva W. Blum
April 2008 W. Riegler

L. Rolandi

References

[ALL 56] W.P. Allis, Motions of ions and electrons, in Handbuch der Physik, ed. by S. Flügge
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Chapter 1
Gas Ionization by Charged Particles
and by Laser Rays

Charged particles can be detected in drift chambers because they ionize the gas
along their flight path. The energy required for them to do this is taken from their
kinetic energy and is very small, typically a few keV per centimetre of gas in normal
conditions.

The ionization electrons of every track segment are drifted through the gas and
amplified at the wires in avalanches. Electrical signals that contain information
about the original location and ionization density of the segment are recorded.

Our first task is to review how much ionization is created by a charged particle
(Sects. 1.1 and 1.2). This will be done using the method of Allison and Cobb, but
the historic method of Bethe and Bloch with the Sternheimer corrections is also
discussed. Special emphasis is given to the fluctuation phenomena of ionization.

Pulsed UV lasers are sometimes used for the creation of straight ionization tracks
in the gas of a drift chamber. Here the ionization mechanism is quite different from
the one that is at work with charged particles, and we present an account of the
two-photon rate equations as well as of some of the practical problems encountered
when working with laser tracks (Sect. 1.3).

1.1 Gas Ionization by Fast Charged Particles

1.1.1 Ionizing Collisions

A charged particle that traverses the gas of a drift chamber leaves a track of ioniza-
tion along its trajectory. The encounters with the gas atoms are purely random and
are characterized by a mean free flight path λ between ionizing encounters given by
the ionization cross-section per electron σI and the density N of electrons:

λ = 1/(NσI). (1.1)

Therefore, the number of encounters along any length L has a mean of L/λ, and the
frequency distribution is the Poisson distribution

W. Blum et al., Particle Detection with Drift Chambers, 1
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P(L/λ,k) =
(L/λ)k

k!
exp(−L/λ). (1.2)

It follows that the probability distribution f (l)dl of the free flight paths l between
encounters is an exponential, because the probability of finding zero encounters in
the interval l times the probability of one encounter in dl is equal to

f (l)dl = P(1/λ,0)P(dl/λ,1)
= (1/λ)exp(−l/λ)dl.

From (1.2) we obtain the probability of having zero encounters along a track
length L:

P(L/λ,0) = exp(−L/λ). (1.3)

Equation (1.3) provides a method for measuring λ. If a gas counter with sensitive
length L is set up so that the presence of even a single electron in L will always give a
signal, then its inefficiency may be identified with expression (1.3), thus measuring
λ. This method has been used with streamer, spark, and cloud chambers, as well as
with proportional counters and Geiger–Müller tubes. A correction must be applied
when a known fraction of single electrons remains below the threshold.

Table 1.1 shows a collection of measured values of 1/λ with fast particles whose
relativistic velocity factor γ is quoted as well, because λ depends on the particle
velocity (see Sect. 1.2.6); in fact, 1/λ goes through a minimum near γ = 4.

Table 1.1 Measured numbers of ionizing collisions per centimetre of track length in various gases
at normal density [ERM 69]. The relativistic velocity factor γ is also indicated

Gas 1cm/λ γ

H2 5.32±0.06 4.0
4.55±0.35 3.2
5.1±0.8 3.2

He 5.02±0.06 4.0
3.83±0.11 3.4
3.5±0.2a 3.6

Ne 12.4±0.13 4.0
11.6±0.3a 3.6

Ar 27.8±0.3 4.0
28.6±0.5 3.5
26.4±1.8 3.5

Xe 44 4.0

N2 19.3 4.9

O2 22.2±2.3 4.3

Air 25.4 9.4
18.5±1.3 3.5

a[SÖC 79].
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Table 1.2 Minimal primary ionization cross-sections σp for charged particles in some gases, and
relativistic velocity factor γmin of the minimum, according to measurements done by Rieke and
Prepejchal [RIE 72]

Gas σp(10−20 cm2) γmin Gas σp(10−20 cm2) γmin

H2 18.7 3.81 i-C4H10 333 3.56
He 18.6 3.68 n-C5H12 434 3.56
Ne 43.3 3.39 neo-C5H12 433 3.45
Ar 90.3 3.39 n-C6H14 526 3.51
Xe 172 3.39 C2H2 126 3.60
O2 92.1 3.43 C2H4 161 3.58
CO2 132 3.51 CH3OH 155 3.65
C2H6 161 3.58 C2H5OH 230 3.51
C3H8 269 3.47 (CH3)2CO 277 3.54

In Table 1.2 we present additional measurements of a larger number of gases
that are employed in drift chambers. These primary ionization cross-sections σp

were measured by Rieke and Prepejchal [RIE 72] in the vicinity of the minimum
at different values of γ and interpolated to the minimum γmin

p at γmin, using the
parametrization of the Bethe–Bloch formula (see Sect. 1.2.7). The mean free path λ
is related to σp by the number density Nm of molecules:

λ = 1/(Nmσp).

The measurement errors are within ±4% (see the original paper for details). In
comparison with the values presented in Table 1.1, the measurements are in rough
agreement, except for argon.

1.1.2 Different Ionization Mechanisms

We distinguish between primary and secondary ionization. In primary ionization,
one or sometimes two or three electrons are ejected from the atom A encountered
by the fast particle, say a π meson:

πA → πA+e−, πA++e−e−, . . . (1.4)

Most of the charge along a track is from secondary ionization where the electrons
are ejected from atoms not encountered by the fast particle. This happens either in
collisions of ionization electrons with atoms,

e−A → e−A+e−, e−A++e−e−, (1.5)

or through intermediate excited states A∗. An example is the following chain of
reactions involving the collision of the excited state with a second species, B, of
atoms or molecules that is present in the gas:

πA → πA∗ (1.6a)
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or
e−A → e−A∗, (1.6b)

A∗B → AB+e−. (1.7)

Reaction (1.7) occurs if the excitation energy of A∗ is above the ionization potential
of B. In drift chambers, A∗ is often the metastable state of a noble gas created in
reaction (1.6b), and B is one of the molecular additives (quenchers) that are required
for the stability of proportional wire operation; A∗ may also be an optical excitation
with a long lifetime due to resonance trapping. These effects are known under the
names of Penning effect (involving metastables) and Jesse effect (involving optical
excitations, also used more generally); obviously they depend very strongly on the
gas composition and density.

Another example of secondary ionization through intermediate excitation has
been observed in pure rare gases where an excited molecule A∗

2 has a stable ionized
ground state A+

2 :
A∗A → A∗

2 → A+
2 e−. (1.8)

The different contributions of processes (1.5–1.8) are in most cases unknown. For
further references, we recommend the proceedings of the conferences dedicated to
these phenomena, for example the Symposium on the Jesse Effect and Related Phe-
nomena [PRO 74].

A pictorial summary of the processes discussed is given in Fig. 1.1.

1.1.3 Average Energy Required to Produce One Ion Pair

Only a certain fraction of all the energy lost by the fast particle is spent in ionization.
The total amount of ionization from all processes is characterized by the energy W
that is spent, on the average, on the creation of one free electron. We write

W 〈NI〉 = L

〈
dE
dx

〉
, (1.9)

where 〈NI〉 is the average number of ionization electrons created along a trajectory
of length L, and 〈dE/dx〉 is the average total energy loss per unit path length of the
fast particle; W must be measured for every gas mixture.

Many measurements of W have been performed since the advent of radioactiv-
ity, using radioactive and artificial sources of radiation. The amount of ionization
produced by particles that lose all their energy in the gas is measured by ionization
chambers or proportional counters. The value of W in this case is the ratio of the
initial energy to the number of ion pairs. The energy W depends on the gas – its
composition and density – and on the nature of the particle. Experimentally it is
found that W is independent of the initial energy above a few keV for electrons and
a few MeV for alpha-particles, which is a remarkable fact.
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Fig. 1.1 Pictorial
classification of the ionization
produced by a fast charged
particle in a noble gas
containing molecules with
low ionization potential: (−)
electron; (+) positive ion,
single charge; (+ +) positive
ion, double charge; (+)
positive ion of the
low-ionization species; (∗)
state excited above the lower
ionization potential of the
other species; ()(+) positive
ion of noble gas molecule; ∼
photon transmission,
−− collision

When a relativistic particle traverses a layer of gas, the energy deposit is such a
small fraction of its total energy that it cannot be measured as the difference between
initial and final energy. Therefore, there is no direct determination of the appropriate
value of W , and we have to rely on extrapolations from fully stopped electrons.

A critical review of the average energy required to produce an ion pair is given
in a report of the International Commission on Radiation Units and Measurements
[INT 79]. A treatment in a wider context is provided by the book of Christophorou
[CHR 71] and by the review by Inokuti [INO 75]; see also the references quoted
in these three works. For pure noble gases, W varies between 46 eV for He and
22 eV for Xe; for pure organic vapours the range between 23 and 30 eV is typical.
Ionization potentials are smaller by factors that are typically between 1.5 and 3.
Table 1.3 contains a small selection of W -values for various gases.

Values of W measured with photons and with electrons are the same. Values of
W measured with α-sources are similar to those measured with β -sources: Wα/Wβ
is 1 for noble gases but can reach 1.15 for some organic vapours [CHR 71]. In pure
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Table 1.3 Energy W spent, on the average, for the creation of one ionization electron in various
gases and gas mixtures [CHR 71]; Wα and Wβ are from measurements using α or β sources,
respectively. The lowest ionization potential is also indicated

Gas Wα (eV) Wβ (eV) I(eV) Gas mixturea Wα (eV)

H2 36.4 36.3 15.43 Ar (96.5%)+C2H6 (3.5%) 24.4
He 46.0 42.3 24.58 Ar (99.6%)+C2H2 (0.4%) 20.4
Ne 36.6 36.4 21.56 Ar (97%)+CH4 (3%) 26.0
Ar 26.4 26.3 15.76 Ar (98%)+C3H8 (2%) 23.5
Kr 24.0 24.05 14.00 Ar (99.9%)+C6H6 (0.1%) 22.4
Xe 21.7 21.9 12.13 Ar (98.8%)+C3H6 (1.2%) 23.8
CO2 34.3 32.8 13.81 Kr (99.5%)+C4H8-2 (0.5%) 22.5
CH4 29.1 27.1 12.99 Kr (93.2%)+C2H2 (6.8%) 23.2
C2H6 26.6 24.4 11.65 Kr (99%)+C3H6 (1%) 22.8
C2H2 27.5 25.8 11.40
Air 35.0 33.8 12.15
H2O 30.5 29.9 12.60

a The quoted concentration is the one that gave the smallest W .

argon, the value of W for very slow electrons such as the ones emitted in primary
ionization processes (1.5) is greater than for fast electrons. Figure 1.2 contains mea-
surements reported by Combecher [COM 77].

From Table 1.3 it is apparent that the total ionization in a noble gas can be in-
creased by adding a small concentration of molecules with low ionization potential.
The extra ionization comes later, depending on the de-excitation rate of the A∗ in-
volved. For example, a contamination of 3×10−4 nitrogen in neon–helium gas has

Fig. 1.2 Average energy W spent for the creation of one ionization electron in pure argon and in
pure xenon as a function of the energy E of the ionizing particle, which is an electron fully stopped
[COM 77]. The dashed lines represent the values Wβ from Table 1.2 measured at larger E
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caused secondary retarded ionization that amounted to 60% of the primary, with
mean retardation times around 1μs [BLU 74].

Whether the number of primary encounters that lead to ionization can be in-
creased in the same manner is not so clear; the fast particle would have to excite the
state A∗ in a primary collision (reaction (1.6a)). A metastable state does not have a
dipole transition to the ground state and is therefore not easily excited by the fast
particle.

1.1.4 The Range of Primary Electrons

Primary electrons are emitted almost perpendicular to the track as their momentum
remains very small compared to the one of the track. They lose their kinetic energy
E in collisions with the gas molecules, scattering almost randomly and producing
secondary electrons, until they have lost their kinetic energy. A practical range R can
be defined as the thickness of the layer of material they cross before being stopped.
The empirical relation

R(E) = AE

(
1− B

1+CE

)
(1.10)

with A = 5.37×10−4 g cm−2 keV−1, B = 0.9815, and C = 3.1230×10−3 keV−1 is
shown in Fig. 1.3 and compared with experimental data in the range between 300 eV
and 20 MeV. It is shown in [KOB 68] that the parametrization (1.10) is applicable
to all materials with low and intermediate atomic number Z. In the absence of low-
energy data this curve may be taken as a basis for an extrapolation to lower E. Below
1 keV the relation reads

R(E) = 9.93
( μg

cm2 keV

)
E.

In argon N.T.P. an electron of 1 keV is stopped in about 30μm, and one of 10 keV
in about 1.5 mm. Only 0.05% of the collisions between the particle and the gas
molecules produce primary electrons with kinetic energy larger than 10 keV. We
will compute these probabilities in Sect. 1.2.4.

1.1.5 The Differential Cross-section dσ/dE

Every act of ionization is a quantum mechanical transition initiated by the field
of the fast particle and the field created indirectly by the neighbouring polarizable
atoms. A complete calculation would involve the transition amplitudes of all the
atomic states and does not exist.

For the detection of particles, what we have to know in the first place is the
amount of ionization along the track and the associated fluctuation phenomena. For
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Fig. 1.3 Practical range versus kinetic energy for electrons in aluminium. The data points are
from various authors, which can be traced back consulting [KOB 68]. The curve is a
parametrization according to (1.10)

this it is sufficient to determine for an act of primary ionization with what probabil-
ities it will result in a total ionization of 1,2, . . ., or n electrons. The total ionization
over a piece of track and its frequency distribution can then be determined by sum-
ming over all the primary encounters in that piece.

Using the concept of the average energy W required to produce one ion pair –
be it a constant as in (1.9) or a function of the energy of the primary electron as
in Fig. 1.2 – the problem is reduced to finding the energy spectrum F(E)dE of
the primary electrons, or, equivalently, the corresponding differential cross-section
dσ/dE. Once this is known, we obtain λ and F(E) with the relations

1/λ =
∫

N
dσ
dE

dE

and

F(E) =
N(dσ/dE)

1/λ
,

where N is the electron number density in the gas and dσ/dE the differential cross-
section per electron to produce a primary electron with an energy between E and
E +dE.
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1.2 Calculation of Energy Loss

In order to calculate dσ/dE we will begin by investigating the average total en-
ergy loss per unit distance, 〈dE/dx〉, of a moving charged particle in a polarizable
medium. Here a classical calculation is appropriate in which the medium is treated
as a continuum characterized by a complex dielectric constant ε = ε1 + iε2. Later on
we will interpret the resulting integral over the lost energy in a quantum mechani-
cal sense.

1.2.1 Force on a Charge Travelling Through a Polarizable Medium

It is the field Elong opposite to its direction of motion, created by the moving particle
in the medium at its own space point, which produces the force equal to the energy
loss per unit distance

〈dE/dx〉 = eElong,

where e is the charge of the moving particle. We follow the method of Landau and
Lifshitz [LAN 60] in the form used by Allison and Cobb [ALL 80].

Maxwell’s equations in an isotropic, homogeneous, non-magnetic medium are

∇·H = 0,

∇×E = −1
c

∂H

∂ t
,

∇· (εE) = 4π–,

∇×H =
1
c

∂ (εE)
∂ t

+
4π
c

j.

(1.11)

Since there will be no confusion between the electric field vector E and the energy
lost, E, we will use the customary symbols.

The charge density and the flux are given by the particle moving with velocity βc:

– = eδ 3(r−βct), j = βc–. (1.12)

We work in the Coulomb gauge and introduce the potentials φ and A:

H = ∇×A,

∇·A = 0,

E = −1
c

∂A

∂ t
−∇φ .

(1.13)

Equations (1.11), expressed in terms of the potentials, are

∇· (ε∇φ) = −4πeδ 3(r−βct),

−∇2A = − 1
c2

∂
∂ t

(
ε

∂A

∂ t

)
1
c

∂
∂ t

(ε∇φ)+4πeβδ 3(r−βct).
(1.14)
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The solutions can be found in terms of the Fourier transforms φ(k,ω) and A(k,ω)
of the potentials.

The Fourier transform F(k,ω) of a vector field F(r, t) is given by

F(k,ω) =
1

(2π)2

∫
d3r dt F(r, t)exp(ik ·r− iωt),

F(r, t) =
1

(2π)2

∫
d3k dω F(k,ω)exp(ik ·r− iωt).

(1.15)

The solutions of (1.14) are

φ(k,ω) = 2eδ (ω −k ·βc)/k2ε,

A(k,ω) = 2e
ωk/k2c−β

(−k2 + εω2/c2)
δ (ω −k ·βc).

(1.16)

Using the third of (1.13), the electric field for every point is calculated according to

E(r, t) =
1

(2π)2

∫
iω
c
{A(k,ω)− ikφ(k,ω)exp[i(k ·r−ωt)]}d3k dω, (1.17)

and the energy loss per unit length is

〈dE/dx〉 = eE(βct, t) ·β/β , (1.18)

which is independent of t because the field created in the medium is travelling with
the particle. This may be seen by inserting (1.16) into (1.17).

In the evaluation of (1.17) with the help of (1.16) we integrate over the two
directions of k using the fact that the isotropic medium has a scalar ε . We further
use ε(−ω) = ε∗(ω) and obtain finally

〈
dE
dx

〉
=

2e2

β 2π

∞∫
0

dω
∞∫

ω/βc

dk

[
ωk

(
β 2 − ω2

k2c2

)

×Im
1

−k2c2 + εω2 − ω
kc2 Im

(
1
ε

)]
. (1.19)

The lower limit of the integral over k depends on the particle velocity βc and is
explained later.

The energy loss is determined by the manner in which the complex dielectric
constant ε depends on the wave number k and the frequency ω . Once ε(k,ω) is
specified, 〈dE/dx〉 can be calculated for every β ;ε(k,ω) is, in principle, given
by the structure of the atoms of the medium. In practice, a simplifying model is
sufficient.
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1.2.2 The Photo-Absorption Ionization Model

Allison and Cobb [ALL 80] have made a model of ε(k,ω) based on the measured
photo-absorption cross-section σγ(ω). A plane light-wave travelling along x is at-
tenuated in the medium if the imaginary part of the dielectric constant is larger than
zero. The wave number k is related to the frequency ω by

k =
√

εω/c (ε = ε1 + iε2). (1.20)

It causes a damping factor e−αx/2 in the propagation function and e−αx in the inten-
sity with

α = 2(ω/c)Im
√

ε ≈ (ω/c)ε2. (1.21)

The second equality holds if ε1 −1, ε2 	 1 such as for gases.
In terms of free photons traversing a medium that has electron density N and

atomic charge Z, the attenuation is given by the photo-absorption cross-section
σγ(ω):

σγ(ω) =
Z
N

α ≈ Z
N

ω
c

ε2(ω). (1.22)

The cross-section σγ(ω), and therefore ε2(ω), is known, for many gases, from mea-
surements using synchrotron radiation. The real part of ε is then derived from the
dispersion relation

ε1(ω)−1 =
2
π

P

∞∫
0

xε2(x)
x2 −ω2 dx (1.23)

(P = principal value). Figures 1.4 and 1.5 show graphs of σγ and ε1 for argon.
In the quantum picture, the (ω,k) plane appears as the kinematic domain of en-

ergy E = h̄ω and momentum p = h̄k exchanged between the moving particle and
the atoms and electrons of the medium. The exchanged photons are not free, not
‘on the mass shell’, i.e. they have a relation between E and p that is different from
E = pc/

√
ε implied by (1.20). Their relationship may be understood in terms of the

kinematic constraints: for example, the photons exchanged with free electrons at
rest have E = p2/2m, the photons exchanged with bound electrons (binding energy
E1, approximate momentum q) have E ≈ E1 +(p+q)2/2m. The minimum momen-
tum transfer at each energy E depends on the velocity β of the moving particle and
is equal to pmin = E/βc. It delimits the kinematic domain and is the lower limit of
integration in the integral (1.19).

Figure 1.5 presents a picture of the (E, p) plane. The solution of the integral
(1.19) requires a knowledge of ε(k,ω) over the kinematic domain. From (1.22) and
(1.23) it is known only for free photons, i.e. outside, along the line pfγ in Fig. 1.6.

The model of Allison and Cobb (photo-absorption ionization, or PAI model) con-
sists in extending the knowledge of ε into the kinematic domain. For small k in the
resonance region below the free-electron line, they take

ε(k,ω) = ε(ω), (1.24)
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Fig. 1.4 Total photo-ionization cross-section of Ar as a function of the photon energy, as
compiled by Marr and West [MAR 76]. The imaginary part of the dielectric constant is calculated
from this curve using (1.22)

independent of k and equal to the value derived by (1.22) and (1.23). On the
free-electron line, they take a δ function to represent point-like scattering in the
absorption:

ε2(k,ω) = Cδ (ω − k2/2m). (1.25)

The normalizing constant C is determined in such a way that the total coupling
strength satisfies the Bethe sum rule for each k:

∫
ωε2(k,ω) dω =

2π2Ne2

m
. (1.26)

For a justification of this procedure and a more detailed discussion, the reader is
referred to the original article [ALL 80].

Fig. 1.5 The real part of ε as a function of E, calculated from Fig. 1.4 using (1.23) [LAP 80]
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Fig. 1.6 Kinematic domain of
(ω,k) or (E, p) of the electro-
magnetic radiation exchanged
between the fast particle (β )
and the medium. The mini-
mum momentum exchanged
is p = E/βc; the momentum
exchanged to a free electron
is pfe =

√
2mE/c2. The mo-

menta exchanged with bound
electrons are smeared out
around the free-electron line;
pmin delimits the physical
domain, pfγ is the free pho-
ton line

Using (1.22–1.25), we are now able to integrate expression (1.19) for 〈dE/dx〉
over k. What remains is an integral over ω:

〈
dE
dx

〉
=

∞∫
0

dω
e2

β 2c2π

[
Nc
Z

σγ(ω) ln
2mc2β 2

h̄ω[(1−β 2ε1)2 +β 4ε2
2 ]1/2

+ω
(

β 2 − ε1

|ε|2
)

θ +
1

Zω

ω∫
0

σγ(ω ′)dω ′
]
. (1.27)

Here we have obtained the energy loss per unit path length in the framework of the
electrodynamics of a continuous medium, although our knowledge of ε(k,ω) was
actually inspired by a picture of photon absorption and collision.

At this point we leave the frame given by the classical theory and recognize the
energy loss as being caused by a number of discrete collisions per unit length, each
with an energy transfer E = h̄ω . Therefore, we reinterpret the integrand of (1.27)
to mean E times a probability of energy transfer per unit path per unit interval of
E. Now a collision probability per unit path is a cross-section times the density N.
Therefore, we write the integral (1.27) in the form

〈
dE
dx

〉
=

∞∫
0

EN
dσ
dE

h̄ dω. (1.28)

This gives us the differential energy transfer cross-section per electron:

dσ
dE

=
α

β 2π
σγ(E)

EZ
ln

2mc2β 2

E[(1−β 2ε1)2 +β 4ε2
2 ]1/2

+
α

β 2π

⎡
⎣ Z

Nh̄c

(
β 2 − ε1

|ε|2
)

θ +
1

ZE2

E∫
0

σγ(E ′)dE ′

⎤
⎦ . (1.29)
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The spectrum of energy transfer is determined by expression (1.29). The normalized
differential probability per unit energy is

F(E) =
N(dσ/dE)∫
N(dσ/dE)dE

, (1.30)

where N is the number of electrons per unit volume; ε = ε1 + iε1 is to be obtained
using (1.22) and (1.23); θ = arg(1 − ε1β 2 + iε2β 2); and α is the fine-structure
constant.

The number of primary encounters per unit length is given by

1/λ =
∫

N
dσ
dE

dE. (1.31)

In the gas of a drift chamber the largest possible energy transfers cause secondary
electron tracks which do not belong to the primary track. Depending on the exact
method of observation, there is always an effective cut-off Emax for the observable
energy transfer, which is independent of β . For simplicity, we keep the ‘∞’ as the
upper limit of integration. Figure 1.7 shows the energy spectrum for argon accord-
ing to a numerical calculation along this line by Lapique and Piuz [LAP 80]; they
have evaluated the model of Chechin et al. [CHE 72, ERM 77], which is very sim-
ilar to the PAI model. The second peak beyond E = 240eV, which is due to the
contribution of the L shell, is easily visible.

Fig. 1.7 Distribution of energy transfer calculated by Lapique and Piuz for argon at γ = 1000,
based on the formula by Chechin et al. [CHE 76], similar to our (1.29). Adapted from Table 1.1 of
[LAP 80]
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1.2.3 Behaviour for Large E

For energies above the highest atomic binding energy EK, the fast particle undergoes
elastic scattering on the atomic electrons as if they were free, and (1.29) becomes
the differential cross-section for Rutherford scattering on one electron. Using (1.26)
and (1.27) we find

dσ
dE

→ 2πr2
e

β 2

mc2

E2 (E � EK), (1.32)

where re is the classical electron radius, equal to e2/mc2 = 2.82× 10−13 cm. This
happens because the third term in (1.29) is the only one surviving at large E, where
σγ(E) vanishes quickly so that the sum rule (1.26) applies, together with (1.22).

This behaviour at large E means that the energy spectrum F(E) has an extremely
long tail. Although

∫
F(E)dE converges, the mean transferred energy per collision,

〈E〉, has a logarithmic divergence,

〈E〉 =
∫

EF(E)dE =
∫

dE/E ∝ logE. (1.33)

This requires a careful interpretation of the mean energy transfer, as shown in the
following sections. There is no danger that the mean transferred energy 〈E〉 diverges
in the practical application because there is always an upper cut-off for E at work in
the integral (1.33), which depends on the situation. This is discussed in Sec. 1.2.8.

1.2.4 Cluster-Size Distribution

An effective description of the ionization left by the particle along its trajectory is
provided by a probability distribution of the number of electrons liberated directly
or indirectly with each primary encounter. It is known under the name cluster-size
distribution, because the secondary electrons are usually created in the immediate
vicinity of the primary encounter and, together with the primary electrons, form
clusters of one or several – sometimes many – electrons. Although the secondary
electrons are not always so well localized, we will use this name.

In order to calculate the cluster-size distribution P(k) we need to know the spec-
trum of energy loss, F(E)dE, and, for each E, the probability p(E, k) of producing
exactly k ionization electrons. The cluster-size distribution is obtained by integration
over the energy:

P(k) =
∫

F(E)p(E,k)dE. (1.34)

We may also form the integrated probability Q( j) that a cluster has more than j
electrons:

Q( j) = 1−
j

∑
k=1

P(k). (1.35)
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Fig. 1.8 Integral cluster-size distribution for fast particles (γ = 1000) in argon; Q(n) is the
probability that the cluster has more than n electrons. Calculated from [LAP 80] and [ERM 77].
For large n, Q(n) ≈ 0.2/n

The quantity p(E, k) contains the details of the various ionization mechanisms de-
scribed in Sect. 1.1 and is generally not known. Lapique and Piuz [LAP 80] have
made a computer model of the atomic processes involved in pure argon and have
thus been able to calculate a cluster-size distribution. It is presented in the integrated
form in Fig. 1.8.

Apart from early cloud chamber studies, there is now one careful experimental
determination of cluster-size distributions from the Heidelberg group [FIS 91]. It
covers the range up to approximately 15 electrons in argon, helium, methane and
several hydrocarbons. We reproduce their measurements in Fig. 1.9. For numeri-
cal applications Table 1.4 contains best estimates for the probabilities P(k), based
on the hand-drawn lines of Fig. 1.9 and their extrapolations according to the 1/n2

behaviour expected for unbound electrons.
If one compares these measurements with the calculation of Lapique and Piuz,

then one observes that there is somewhat less structure than they expected in the
function P(k). The Heidelberg group suggest that the absorption of free photons
with its strong energy variation, which is the basis for the model of Chechin et al.
and the PAI model, may not be directly applicable to the calculation of dσ/dE.

The number n in these graphs is called k in the text and in Table 1.4.

1.2.5 Ionization Distribution on a Given Track Length

The importance of the cluster-size distribution lies in the fact that, once it is known,
the ionization distribution G(x, n) on the track length x is calculated simply by
summing the cluster size as many times as there are primary encounters in the track
length; G(x, n) depends only on the cluster-size distribution and the number of
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Fig. 1.9 Experimental cluster-size distributions from [FIS 91]. The continuous lines are
hand-drawn interpolations whereas the broken lines are extrapolations corresponding to the
1/n2-law expected for large n
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Table 1.4 Experimental cluster-size distributions P(k) in per cent by Fischle et al. [FIS 91].
Whereas the measured data and their errors are shown in Fig. 1.9, this table contains interpolated
values for numerical applications. Values in brackets are extrapolations according to the expecta-
tion of free electrons

CH4 Ar He CO2

k
1 78.6 65.6 76.60 72.50
2 12.0 15.0 12.50 14.00
3 3.4 6.4 4.60 4.20
4 1.6 3.5 2.0 2.20
5 0.95 2.25 1.2 1.40

6 0.60 1.55 0.75 1.00
7 0.44 1.05 0.50 0.75
8 0.34 0.81 0.36 0.55
9 0.27 0.61 0.25 0.46
10 0.21 0.49 0.19 0.38

11 0.17 0.39 0.14 0.34
12 0.13 0.30 0.10 0.28
13 0.10 0.25 0.08 0.24
14 0.08 0.20 0.06 0.20
15 0.06 0.16 0.048 0.16

16 (0.050) 0.12 (0.043) 0.12
17 (0.042) 0.095 (0.038) 0.09
18 (0.037) 0.075 (0.034) (0.064)
19 (0.033) (0.063) (0.030) (0.048)
≥20 (11.9/k2) (21.6/k2) (10.9/k2) (14.9/k2)

clusters. The most practical way to achieve the summation is by the Monte Carlo
method on a computer, especially when the cluster-size distribution exists only in
the form of a table.

In this case, we proceed in two steps. First, we make a random choice from the
Poisson distribution (1.2) of a number m of encounters in the track length x : 〈m〉 =
x/λ. Second, we make m random choices from the cluster-size distribution P(k) of
m cluster sizes k1, k2, . . . , km. The number

n =
m

∑
i=1

ki (1.36)

is one entry in a frequency distribution G(x, n) of the number of ionization electrons
in x.

Figure 1.10 contains ionization distributions for several track lengths (mean num-
bers 〈m〉 of clusters) in argon that were computed in this way using the integrated
probability Q depicted in Fig. 1.8. The ionization distributions develop a peak that
defines the most probable ionization Imp. They also have a full width at half max-
imum W, although the mean and the root-mean-square deviation exist only if an
upper cut-off is introduced. The value of Imp is not proportional to the mean number
of clusters but rises from 〈m〉 to ∼ 3〈m〉 as 〈m〉 increases from 5 to 1000. Figure 1.11
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Fig. 1.10 Ionization distri-
bution obtained by summing
m times the cluster-size dis-
tribution of Fig. 1.8, using
the method described in
Sect. 1.2.3. On 1 cm of Ar
in normal conditions there
are, on the average, 〈m〉 = 35
clusters (γ = 1000); the eight
distributions then correspond
to track lengths of 0.14,
0.29, 0.57, 1.4, 2.9, 5.7, 14,
and 29 cm



20 1 Gas Ionization by Charged Particles and by Laser Rays

Fig. 1.11 Values of the most
probable number of electrons
(expressed in units of 〈m〉)
as a function of the mean
number 〈m〉 of clusters in
Ar, obtained from the data of
Fig. 1.8

shows this increase. It does not obey a simple law because it is influenced by the
atomic structure of argon. Neglecting the atomic structure, it approaches a straight
line; compare the remarks made on Δmp after (1.49). The distributions of Fig. 1.10
also become more peaked, so that the ratio W/Imp decreases from ∼ 1.3 to ∼ 0.3 in
this range of 〈m〉.

Relative widths W/Imp of measured pulse-height distributions quoted by Walenta
[WAL 81] are shown in Fig. 1.11 as a function of the gas sample thickness pL. The
ratio decreases with increasing pL. If we parametrize the decrease in the form of a
power law, (

W
Imp

)
1

:

(
W
Imp

)
2

= [(pL)1 : (pL)2]k, (1.37)

then from Fig. 1.12 we get k between −0.2 and −0.4. Since the ionization distri-
bution depends only on the cluster-size distribution and the number of clusters, it
depends on the sample length L and the gas pressure p through the product pL.

Fig. 1.12 Measured rela-
tive widths of pulse-height
distributions as collected by
Walenta [WAL 81]. The plot
shows ten different experi-
ments with the gas sample
thickness pL varying between
0.6 and 15 cm bar. The line is
drawn to guide the eye
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Fig. 1.13 Average ionization
after cutting the upper 5% of
the probability distribution,
calculated as a function of
the average number 〈m〉 of
clusters

For practical purposes, we introduce an upper cut-off E95 in the transferred
energy at the level of 95% of the integrated probability distribution F(E):

E95∫
0

F(E)dE = 0.95.

This allows us to compute the average ionization 〈I〉95 from the distributions of
Fig. 1.10. It is plotted in Fig. 1.13 as a function of 〈m〉.

The role of the rare cases of large cluster sizes can be appreciated by looking
at Fig. 1.8. Since 1% of the clusters are larger than 30 electrons, it takes of the or-
der of 100 primary interactions (3 cm of argon NTP, γ = 1000) to have one such
cluster among them. It will contribute about 10% to the total ionization. The larger
the number m of clusters one needs to sum, the smaller will be the probabilities
Q(n) that have to be taken into account. Let us compute the probability P that the
very rare event of a large cluster above n0 occurs at least once in a number of m
clusters:

P = 1− [1−Q(n0)]m ≈ 1− e−mQ(n0). (1.38)

It can be shown that (1.38) is correct within 10% as long as Q(n0) < 1/
√

(5m).
If the cluster-size distribution is not known, we first calculate the energy loss Δ on

a given track length x and its probability distribution F(x,Δ). This is then converted
into the ionization distribution by dividing Δ by the appropriate value of W . The
energy transfer spectrum is independent of any other collision, and we have to sum
the contributions from as many collisions 〈m〉 = x/λ as there are on the length x,
using expression (1.31).

These days this is best achieved by the Monte Carlo method using a computer.
Working with analytical methods, one may also perform a stepwise convolution.
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For example,

F(2λ,Δ) =
∞∫

0

F(Δ −E)F(E)dE,

F(4λ,Δ) =
∞∫

0

F(2λ,Δ −E)F(2λ,E) dE, etc. (1.39)

The review of Bichsel and Saxon [BIC 75] contains more details about how to build
up F(x,Δ).

Another way of constructing F(x,Δ) from F(E) was invented by Landau in 1944
[LAN 44]. He expressed the change of F(x,Δ) along a length dx by the difference
in the number of particles which, because of ionization losses along dx, acquire a
given energy E and the number of particles which leave the given energy interval
near Δ :

∂
∂x

F(x,Δ) =
∞∫

0

F(E)[F(x,Δ −E)−F(x,Δ)] dE. (1.40)

(For the upper limit of integration, one may write ∞ because F(x,Δ) = 0 for Δ < 0.)
The solution of (1.40) is found with the help of the Laplace transform F̄(x, p), which
is related to the energy loss distribution by

F̄(x, p) =
∞∫

0

F(x,Δ)e−pΔ dΔ , (1.41)

F(x,Δ) =
1

2πi

+i∞+σ∫
−i∞+σ

epΔ F̄(x, p) dp. (1.42)

Here the integration is to the right (σ > 0) of the imaginary axis of p. Multiplying
both sides of (1.40) by a e−pΔ and integrating over Δ , we get

∂
∂x

F̄(x, p) = −F̄(x, p)
∞∫

0

F(E)(1− e−pE) dE, (1.43)

which integrates to

F̄(x, p) = exp

⎡
⎣−x

∞∫
0

F̄(E)(1− e−pE) dE

⎤
⎦ , (1.44)

because the boundary condition is F(0,Δ) = δ (Δ) or F(0, p) = 1. Inserting (1.41)
into (1.44), Landau obtained the general expression for the energy loss distribution,
valid for any F(E):

F(x,Δ) =
1

2πi

+i∞+σ∫
−i∞+σ

exp

⎡
⎣pΔ − x

∞∫
0

F(E)(1− e−pE) dE

⎤
⎦ dp. (1.45)
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This relation was evaluated by Landau for a simplified form of F(E) that is ap-
plicable at energies far above the atomic binding energies where the scattering
cross-section is determined by Rutherford scattering and where the atomic struc-
ture can be ignored (see (1.32)). Inserting

F(E) =
2πr2

e

β 2

mc2

E2 N (1.46)

into (1.45), Landau was able to show that the probability distribution was given by
a universal function φ(λ):

F(x,Δ) dΔ = φ
(

Δ −Δmp

ξ

)
d

(
Δ −Δmp

ξ

)
. (1.47)

Here Δmp is the most probable energy loss, and ξ is a scaling factor for the energy
loss, proportional to x:

ξ = x2πr2
e

mc2

β 2 N. (1.48)

The function φ(λ) and its integral ψ(λ) are given as a graph in Fig. 1.14. Computer
programs exist for the calculation of φ and for the random generation of Landau-
distributed numbers: see Kölbig and Schorr [KÖL 84]. The integral probability for
an energy loss exceeding Δ is

∞∫
Δ

F(x,Δ ′) dΔ ′ = ψ
(

Δ −Δmp

ξ

)
. (1.49)

We notice that 10% of the cases lie above the value of Δ that is three times the
FWHM above the most probable value. For large positive values of the argument,
φ(λ) tends to 1/λ2, ψ(λ) tends to 1/λ. The assumption (1.47) makes the Landau

Fig. 1.14 Landau’s function
φ(λ) and its integral ψ(λ).
The scale on the left refers to
φ , the one on the right to ψ
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curve a valid description of the energy loss fluctuations only in a regime of large
Δ (corresponding to x ≈ 170cm in normal argon gas, according to an analysis of
[CHE 76] [see also Fig. 1.21]). We skip a discussion of Landau’s expression for Δmp

and of the normalization of his F(E). Let us remark, however, that, as a function of
the length x, Δmp is proportional to x logx. In practice, the Landau curve is often
used to parametrize energy loss distributions with a two-parameter fit of ξ and Δmp,
without reference to the theoretical expressions for them.

Generalizations of the Landau theory have been given by Blunck and Leisegang
[BLU 50], Vavilov [VAV 57], and others. The interested reader is referred to the
monograph by Bugadov, Merson, Sitar and Chechin [BUG 88] for a comparison of
these theories of energy loss.

When the summation of the energy lost over the length x has been achieved with
any of the methods mentioned above, the energy loss distribution must be converted
into an ionization distribution. We have to make the assumption that to every energy
loss Δ there corresponds, on the average, a number n of ion pairs according to the
relation

Δ = nW, (1.50)

where W is the average energy for producing an ion pair (Sect. 1.1.3). Expression
(1.50) is to hold independently of the size or the composition of Δ (whether there
are one large or many small transfers), and W is to be the constant measured with
fully stopped electrons. It is hard to ascertain the error that we introduce with this
assumption. The W measured with fully stopped electrons is known to increase for
energy transfers below ∼ 1keV (Fig. 1.2).

Using (1.50), we obtain the probability distribution G(x, n) of the number n of
ionization electrons produced on the track length x:

G(x,n) = F(x,nW )W. (1.51)

In Fig. 1.15 we show two examples of ionization distributions calculated in this
way by Allison and Cobb [ALL 80], compared with measured pulse heights from
Harris et al. [HAR 73] on argon samples of 1.5 cm thickness. Although there is a
small systematic shift and an excess of data at small n it is a remarkable fact that the
pulse-height distribution can be predicted so well using the theory described above.
For a comparison with the predictions of other models for calculating F(x,Δ), see
Allison and Cobb [ALL 80], and Ermilova, Kotenko and Merzon [ERM 77].

1.2.6 Velocity Dependence of the Energy Loss

Let us go back to (1.29). The term proportional to θ is connected with Cerenkov
radiation of frequency ω . It makes only a small contribution to the cross-section but
has a very characteristic velocity dependence. As soon as ε2 vanishes, this radiation
will be emitted into the medium above a threshold given by

β 2
0 =

1
ε1

, (1.52)
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Fig. 1.15 Measured pulse-
height distributions from
[HAR 73], compared with
the predictions of the
photo-absorption model of
[ALL 80]. The experimen-
tal overflow is collected in
the last bin. The horizontal
scale is normalized to the
peak of the 55Fe spectrum
(5.9keV = 223 electrons)

where θ jumps approximately from 0 to π as β increases. The emitted intensity in
photons per unit path length per unit of photon energy interval is then

N

(
dσ
dE

)
Ce

=
α
c

(
1− 1

β 2ε1

)
=

α
cγ2

0

γ2 − γ2
0

γ2 −1
. (1.53)

The behaviour of this intensity as a function of γ = 1/(1 − β 2)1/2 is plotted in
Fig. 1.16. The threshold can be expressed by

γ2
0 = ε1/(ε1 −1). (1.54)

We now discuss the velocity dependence of the remaining terms in (1.29). They
give the main contribution to the cross-section. The equation may be written in
the form

dσ
dE

=
a

β 2

[
b+ ln

β 2

[(1−β 2ε1)
2 +β 4ε2

2 ]1/2

]
, (1.55)

where a and b depend on E and σγ(E) but are independent of β .
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Fig. 1.16 Intensity of
Cerenkov radiation as a
function of γ , according
to (1.53)

There is an overall factor of l/β 2 which dominates at small β . For β near 1, the
behaviour is determined by the logarithmic term which first rises and then remains
constant as the relativistic velocity increases:

ln
β 2

[(1−β 2ε1)2 +β 4ε2
2 ]1/2

= ln
γ 2 −1

{[γ2(1− ε1)+ ε1]2 +(γ2 −1)2ε2
2}1/2

(1.56)

→ ln
γ 2 −1

ε1
for γ 2 	 1/|1− ε|, (1.57)

→ ln
1

|1− ε | for γ 2 � 1/|1− ε|. (1.58)

The region (1.57) is called the relativistic rise and the region (1.58) the plateau of
the energy loss (see Fig. 1.17).

Z = ln
γ 2 −1

{[γ2(1− ε1)+ ε1]2 +(γ2 −1)ε2
2}1/2

;

ε was put equal to 1−10−4 +10−4i

Fig. 1.17 Behaviour as a
function of γ of the logarith-
mic term (1.56):
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The beginning of the plateau is characterized by a relativistic velocity factor γ ∗,
such that

γ ∗2 −1
ε1

=
1

|1− ε | ; γ ∗ ≈ 1
√

|1− ε|. (1.59)

As long as ε1 is larger than 1 – as is usually the case for visible light – there is
always some γ0 to fulfill the Cerenkov condition (1.54), and Cerenkov radiation is
emitted into the medium if it is transparent (ε2 = 0). Under these conditions, the
beginning of the plateau region is at the same velocity: γ ∗ ≈ γ 0. But if ε1 is smaller
than 1, as happens for energies E above the highest resonances of the atoms of the
medium, then there is no Cerenkov light to correspond to the onset of the plateau.

In the theory of optical dispersion, the behaviour of ε(ω) for ω = E/h̄ far above
the resonances is described using the concept of plasma frequency ωp, which is
given by the charge e, the mass m and the density N of the electrons in the gas
(e.g. [JAC 75]):

ω2
p = 4πNe2/m. (1.60)

It is shown that there

ε1(ω) ≈ 1−ω2
p /ω2, (1.61)

ε2(ω) 	 1− ε1(ω). (1.62)

In connection with (1.59), the beginning of the plateau is given by the plasma fre-
quency for every value E of the energy loss:

γ ∗ ≈ ω/ωp =
( m

4πNc2

)1/2 E
h̄

. (1.63)

It turns out that this relation (which was derived for a free-electron gas) already
holds very well for all E above the M-shell resonances in argon.

The existence of a plateau is caused by the density of the medium. Both (1− ε1)
and ε2 are proportional to the electron density N and go to zero when N does. We
can see from (1.59) and also from (1.29) that the relativistic rise of the energy loss
will continue for all γ in the limit of vanishing N, and there will be no plateau. The
medium with vanishing density behaves like a single atom, which has no plateau for
the collision cross-section.

Figure 1.18 shows the energy loss cross-section in argon as a function of βγ
for three representative values of E, calculated by Allison and Cobb from (1.29)
without the small Cerenkov term. The variable βγ instead of γ is chosen because
it is more appropriate at small β , and also it is the variable in which energy loss
had been discussed before using the Bethe–Bloch formula (Sect. 1.2.7). The three
curves are normalized at their minimum approximately at γ = 4. The onset of the
plateau is at values γ ∗ proportional to E, as described by (1.63). From the point of
view of particle identification, the large E are the best, but they are also very rare
(see Figs. 1.7 and 1.8).

After integration over E, the calculated most probable energy loss had the form
depicted in Fig. 1.19, where it is compared with measurements (see Lehraus et al.
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Fig. 1.18 Energy dependence
of dE/dx: variation with βγ
of the energy loss cross-
section for Ar at normal
density, normalized to βγ = 4,
according to a calculation by
Allison and Cobb [ALL 80].
The curves are for three
values of the energy loss E,
corresponding to M-, L-, and
K-shell ionization

[LEH 82] and references quoted therein). Both the measured and the calculated val-
ues are normalized at γ = 4. The agreement is remarkable and indicates that the
theory gives an adequate explanation of the velocity dependence of gas ionization.

The effect of the gas density on the relativistic rise is visible in the data of
Fig. 1.20. There is also a small dependence on the gas sample thickness, for which
we refer the reader to an article by Walenta [WAL 79] and to Fig. 10.5.

Fig. 1.19 Measured values of the most probable energy loss in an Ar + methane mixture as a
function of βγ , compared with the photo-absorption model of Allison and Cobb for Ar. For details,
see [ALL 80] and [LEH 82] and references quoted therein
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Fig. 1.20 Density dependence of dE/dx: variation with βγ of the most probable value of the
pulse-height distribution, normalized to the value at the minimum, according to measurements by
Walenta et al. [WAL 79] in Ar (90%)+CH4 (10%) over a length of 2.3 cm. The measurements are
at four values of the gas pressure. The interpolating curves were calculated according to the theory
of Sternheimer

There is a velocity dependence not only of the most probable value but also of
the whole shape of the ionization distribution. This dependence is particularly pro-
nounced in very small gas samples, i.e. with small numbers of primary encounters,
where the change in statistics – a consequence of the velocity dependence of the
primary ionization – is relatively large. We see in Fig. 1.21 the energy-loss distribu-
tions calculated with the PAI model for thin (x = 1.5cm) and very thin (x = 0.3cm)
argon samples, at five different velocities. The curious disappearance of the sharp
peak in the very thin sample is caused by the shell structure of the argon atom.

1.2.7 The Bethe–Bloch Formula

Historically, Bethe was the first to calculate, in 1930, the average energy loss with a
quantum theory of collision between the travelling particle and a single atom. After
adding the energy lost to all the atoms in the vicinity of the particle, the energy loss
per unit of pathlength is given by

dE
dx

=
4πNe4

mc2β 2 z2
(

ln
2mc2β 2γ2

I
−β 2

)
(1.64)

([BET 33], Eq. 7.15). In this equation mc2 is the rest energy of the electron, z the
charge of the travelling particle, N the number density of electrons in the matter
traversed, e the elementary charge, β the velocity of the travelling particle in terms
of the velocity c of light, and γ2 = 1/(1−β 2). The symbol I denotes the mean ex-
citation energy of the atom. Bloch calculated values of I using the Thomas–Fermi
theory of the atom. Equation (1.64) is also called the Bethe–Bloch formula. It de-
scribes the integral over all the energies lost to the individual atoms of the medium.
This integral extends up to the maximum of the transferrable energy, and it is for
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Fig. 1.21a,b dE/dx-distributions calculated with the PAI model in argon [ALL 81] for different
values of γ (a) sample length 0.3 cm; (b) 1.5 cm, both at normal density

this reason that (1.64) is only valid for travelling particles heavier than electrons.
These have different kinematic limits because of their small mass and because they
are identical with their collision partner; also their spectrum of transferred energy
is different. A modification of (1.64) will make it valid for electrons and heavier
particles alike above some value of γ ; see Sect. 1.2.8.

The factor at the front of (1.64) can be brought into a different form by expressing
N through Avogadro’s number N0, the gas density ρ and the ratio of atomic number
Z and atomic weight A of the medium: N = N0(Z/A)ρ . Also, e2/mc2 is equal to the
classical electron radius re = 2.82fm. Therefore, (1.64) can be written as

dE
dx

= 4πN0r2
e mc2 Z

A
ρ

1
β 2 z2

(
ln

2mc2

I
β 2γ2 −β 2

)

= 0.3071

(
MeV

g/cm2

)
Z
A

ρ
1

β 2 z2
(

ln
2mc2

I
β 2γ2 −β 2

)
(1.65)

As βγ is increased dE/dx falls at first with 1/β 2, then goes through a mini-
mum and rises again for larger values of βγ . The logarithmic term describes the
relativistic rise. Its strength is given by the mean excitation energy I. There are two
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physical origins of this effect. One is in the time behaviour of the electromagnetic
field carried by the travelling particle. As seen from the atom, the field components
of short duration become stronger as γ goes up, increasing the cross-section for
the excitation and ionization. The other reason is kinematic. As βγ is increased the
maximal possible energy that can be conveyed from the particle to the atom goes up
too and makes the average energy increase with βγ . For example, a pion of 1 GeV
can transfer 50 MeV, and a pion of 10 GeV can transfer 3.3 GeV to an electron at
rest. Such large energy transfers are not applicable to tracks in drift chambers; this
is another reason for a necessary modification of (1.64); see Sect. 1.2.8.

The mean excitation energy I is calculable for simple atoms, but it has most often
been considered a parameter to be fitted from the measurements of the ionization
energy loss near the minimum. A critical collection of such determinations of I
is contained in an article by Seltzer and Berger [SEL 82], a selection for relevant
drift chamber gases is presented in our Table 1.5. The mean excitation energy for
the chemical elements is found to increase with the atomic number Z and follows
approximately

I = AZ

with A decreasing from 20 eV (H) to 13 eV (C) and roughly 10 eV (Ar and higher).
Values of I for compounds and mixtures can be calculated in a first approximation
according to Bragg’s additivity rule, which states that

ln Icompound = ∑ni ln Ii/∑ni,

where the ni and Ii are the electron densities and the mean excitation energies
belonging to element i.

Table 1.5 Mean excitation energies and specific ionization in the minimum for various gases.
Values of I from [SEL 82], values of (dE/dx)min/ρ calculated from (1.64′)

Gas Z A Density ρ
(N.T.P.)

Mean excitation
energy I

(dE/dx)min/ρ

(g/I) (eV ) (MeV/g cm−2)

Hydrogen H2 1 2.016 0.090 19.2 4.11
Helium He 2 4.003 0.178 41.8 1.94
Neon Ne 10 20.18 0.90 137 1.73
Argon Ar 18 39.95 1.78 188 1.52
Krypton Kr 36 83.8 3.74 352 1.36
Xenon Xe 54 131.3 5.89 482 1.26
Oxygen O2 16 32.00 1.43 95 1.81
Nitrogen N2 14 28.01 1.25 82 1.83
Methane CH4 10 16.04 0.72 41.7 2.43
Ethane C2H6 18 30.07 1.25 45.4 2.31
Propane C3H8 26 44.11 1.88 47.1 2.27
Isobutane C4H10 34 58.12 2.67 48.3 2.25
Ethylene C2H4 20 28.05 1.18 51 2.73
Carbon dioxide CO2 22 44.00 1.98 85 1.83
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It was discovered later that the relativistic rise would not continue to indefinitely
large values of γ . In 1939, Fermi calculated the ‘density effect’ as the coherent
effect of the surrounding polarizable atoms, which shield the field of the travelling
particle [FER 40]. A corresponding correction term δ (β ) is introduced into (1.64),
which reads in its conventional form

dE
dx

=
4πNe4

mc2

1
β 2 z2

(
ln

2mc2

I
β 2γ2 −β 2 − δ (β )

2

)
. (1.66)

The exact behaviour of δ (β ) obviously has to depend on the substance and its
state of aggregation. Sternheimer and others have made parameter descriptions of
δ (β ) which consist of piecewise power-law fits with coefficients derived from the
known oscillator strengths of the relevant substances. Such parameters are tabulated
in [STE 84], and the literature can be traced back from there. Near the minimum,
δ = 0, and in the limit of β → 1, the density correction approaches

δ → ln
h̄2ω2

p

I2 γ2 −1 (1.67)

([FAN 63], Eq. 1.49), where h̄ωp is the quantum energy of the plasma oscillation
of the medium (see (1.60)). The correction term δ (β )/2 in (1.66), being a linear
function of ln γ cancels some but not all of the relativistic rise – the dynamic part
has disappeared, and the kinematic part still makes the total energy loss increase,
albeit with a smaller rate than before.

1.2.8 Energy Deposited on a Track – Restricted Energy Loss

The track ionization for drift chambers cannot be calculated on the basis of the total
energy loss described in (1.64). This formula includes all the high-energy transfers
that do not contribute to a track, although they are kinematically possible. Above
a certain energy, an electron knocked out of a gas atom will form a second track,
a δ electron, and will not contribute to the first one any more. Above what energy
the new track is recognized and its ionization no longer attributed to the first track
depends on the circumstances. Among these circumstances there is the range (i.e.
the length of δ ray until it is stopped) in the particular gas. If the range is below the
typical size of the pick-up electrodes, there is no separation yet. If the range is large
compared to this size, then the second track may be separated by the electronics and
the pattern recognition program. If there is a magnetic field and the track of the δ
electron is curved, a similar idea applies to the radius of curvature.

There are also statistical circumstances that produce an effective cut-off: in any
finite number of measurements there is always one largest energy transfer. A value
of energy transfer so improbable that no track of a given series of measurements,
or only an insignificant part of them, contains one is also an effective cut-off. We
have calculated some examples of cut-off energies in Table 1.6 which result from
the different effects mentioned above.
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Table 1.6 Some energy transfers E relevant for the introduction of an upper cut-off in the definition
of a track of ionization in argon gas

Range of δ electron (bar cm) E (keV)

1 30
3 60
10 120
30 250

Radius of curvature of δ -electron
track in different magnetic fields
(cm)

E (MeV)

0.5 in 0.4 T 0.3
0.5 in 1.5 T 1.8
5 in 0.4 T 5.5
5 in 1.5 T 22

Probability of finding one interac-
tion with minimum deposit of E on
1 bar m of tracklength

E (MeV)

0.1% 12
1% 1.2
10% 0.12

Kinematic limits of maximum transferrable energy (MeV)

βγ e π p

0.1 0.001 0.010 0.010
1 0.106 1.01 1.02
4 0.80 15.9 16.3
10 2.31 95 101
100 25.3 5.8×103 9.2×103

1000 255 121×103 490×103

It appears from Table 1.6 that in a typical argon chamber without magnetic field
a cut-off Emax somewhere between 30 and 250 keV is at work on account of the
range. Inside a magnetic field the situation is more complicated because some δ
rays will curl up and stay with the primary track, even up to 1 or several MeV; but
this happens only at the 1% probability level per bar m of tracklength. In summary:
there is a cut-off with a value somewhere between 30 keV and 1 MeV (for a typical
argon chamber), depending on the apparatus. It has to replace the kinematic limit if
it is smaller.

The modified Bethe–Bloch formula for the energy loss restricted in this way
reads as follows ([FAN 63], 1.88):
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(
dE
dx

)
restricted

=
4πNe4

mc2

1
β 2 z2

[
ln

√
2mc2Emaxβγ

I
− β 2

2
− δ (β )

2

]
. (1.68)

Equation (1.68) holds for the range of βγ where Emax is smaller than the kinematic
limit, and for γ2 � Emax/mc2. In comparison to (1.66) the value at the minimum as
well as the relativistic rise have become smaller. Formulae (1.64) and (1.66) were
valid for particles heavier than electrons, because electrons have different kinematic
limits and a different spectrum. The restricted energy loss (1.68) is also applicable
for electrons because the different kinematic limits have been replaced by the com-
mon cut-off Emax. It can be shown ([BET 33], Eq. 55.8) that electrons travelling with
γ2 � Emax/mc2 produce essentially the same spectrum as heavier particles with the
same γ . The universal validity of (1.68), which implies that the restricted energy
loss is a function only of the particle velocity and not of the mass or the energy
separately, is a consequence of the introduction of the cut-off energy Emax.

In the limit β → 1 we now have complete cancellation of the γ dependence, and
the restricted energy loss reaches the ‘Fermi plateau’; insertion of (1.67) into (1.68)
yields (

dE
dx

)
restrβ=1

=
4πNe4

mc2 z2 ln

√
2mc2Emax

h̄ωp
. (1.69)

The ratio between the values of the restricted energy loss on the plateau and in the
minimum is given by

R(Emax) =
(dE/dx)plateau

restricted

(dE/dx)minimum
restricted

=
ln

√
2mc2Emax

h̄ωp

ln

√
2mc2Emax

I
(βγ)min −

β 2
min

2

.

(1.70)

If we insert the values of ωp and I for argon gas at N.T.P., using (1.60) and
Table 1.5, we obtain R = 1.60, 1.54 and 1.48 for Emax = 30keV, 150keV and 1 MeV,
respectively. A precise evaluation of R requires better knowledge of Emax. When
varying the gas and its density, Emax will also change in most applications.

The interest in particle identification by ionization measurement brings into focus
the accuracy and hence the statistical aspect. The average energy loss has large fluc-
tuations due to rare events with large energy transfer. Therefore the most probable
energy loss is a better estimator.

The analytic method of Landau for the determination of the most probable energy
loss cannot be a basis for the calculation of the energy dependence of ionization
in drift chambers – their gas layers are too thin, and the cut-off required by the
definition of a track is not part of Landau’s method.

A statistical formulation of the problem, treated with Monte–Carlo methods
along the lines of Ermilova, Kotenko and Merzon [ERM 77] or of Allison and
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Cobb [ALL 80], is better suited to describing the velocity dependence of the most
probable energy loss. The properties of the medium enter into these models through
the frequency dependence of the dielectric constant, which in turn is derivable from
experimental photoabsorption coefficients. We have presented the photoabsorption
ionization model [PAI] of Allison and Cobb in Sect. 1.2.2. Some more informa-
tion including numerical values of the energy loss from the PAI model on the
Fermi plateau is contained in Chap. 10. A step-by-step comparison of the method
of Bethe–Bloch–Sternheimer with the PAI model does not exist, to our knowledge.

The reader who is interested in more historical details may find useful the famous
old book by Rossi [ROS 52]. An in-depth discussion of ionization is contained in
the monograph by Bugadov, Merson, Sitar and Chechin [BUG 88] as well as in the
article by Fano [FAN 63].

1.2.9 Localization of Charge Along the Track

As we have seen in Sects. 1.1.1 and 1.2.2, the charge along a track is created in
discrete clusters that vary greatly in size. This has some consequence for the coor-
dinate measurement of the track. The precise way in which the discrete nature of
ionization determines fundamental limits of accuracy depends on the measurement
method in question and will be dealt with in Chap. 7. In preparation, we discuss
here the following question: Given a certain track length L – for example, the part
of the track collected onto one wire – with what precision is the centre of gravity of
the discretely deposited ionization located along the track? If the coordinate along
the track is x, and in the ith cluster we have ni electrons, then the centre of gravity
is at

x̄ =
m

∑
i=1

(xini)
/ m

∑
i=1

ni. (1.71)

Let the track extend around 0 from −L/2 to +L/2. The probability distribution for
every xi is

f (xi) dxi = (1/L) dxi. (1.72)

Averaging over all xi, we have for every fixed set of ni

〈x̄〉 = 0

and

〈x̄2〉 =

〈
m

∑
i=1

x2
i n2

i

〉/(
m

∑
i=1

ni

)2

(1.73)

=
L2

12

m

∑
i=1

n2
i

/(
m

∑
i=1

ni

)2

=
L2

12
1

Neff
.
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Table 1.7 Values of Neff calculated for various average numbers 〈m〉 of clusters, using the cluster-
size distribution of Fig. 1.7

Average number 〈m〉 1 5 10 20 50 100 200 500 1000

Neff 1 2.4 3.7 5.2 8.0 12 15 26 41

This is because the xi are created independently of each other so that the mixed
terms xix j in the square drop out. The statistical factor that multiplies L2/12 has
been denoted 1/Neff in (1.73); its value depends on the partitioning of the charge
over the m clusters. If all clusters were equally large, then Neff would take on the
value m. It is equal to the equivalent number of independently fluctuating entities
of equal sizes that create a fluctuation that is the same as the one created by the
clustered charges. As these are different in size, Neff has to be smaller than m.

For a calculation of Neff, which governs the localizability of any cluster ionization
charge, we have to integrate over the cluster-size distribution. Starting from the one
plotted in Fig. 1.7 we calculate, with the Monte Carlo method, the values listed in
Table 1.7.

There are two properties of Neff that are remarkable: (i) it is quite small compared
with the average number 〈m〉 of clusters (let alone the total ionization); (ii) it does
not grow as fast as 〈m〉 (see the graph in Fig. 1.22). The reason for the latter is
that the relative contribution of the rare large clusters grows with the increase of
the number of clusters as the tail of the cluster-size distribution is sampled more
often.

The variation of Neff with 〈m〉 seen in Fig. 1.22 may be described roughly as

Neff = 〈m〉0.54. (1.74)

There is a statistical correlation between Neff and the total charge deposited in
L. It can be used to increase Neff by cutting on the pulse height, but the gain is not
overwhelmingly large.

If diffusion is taken into account, Neff may become considerably larger in time,
owing to the declustering effect. This is treated in Sect. 1.2.

Fig. 1.22 Dependence of Neff,
the effective number of inde-
pendently fluctuating entities
of charge, as a function of the
mean number 〈m〉 of clusters.
Result of a calculation using
the cluster-size distribution
in Ar
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1.2.10 A Measurement of Neff

The effective number of independently fluctuating charges along the length L of a
track can be measured. The r.m.s. fluctuation of the centre of gravity of the charge
deposited along L is, by definition of Neff, equal to

δyc =
L√

12Neff
.

A particle track whose ionization is sampled over a length L by n wires with
pulse heights Pi(i = 1, . . . ,n) has the centre of its charge at

yc = ∑Piyi/∑Pi,

where the yi are the wire positions along the track. A measurement of yc of many
tracks allows a determination of δyc, and hence of Neff, to be made.

In an experiment using a model of the ALEPH TPC, cosmic-ray tracks were
collected in a small interval of momentum and angle of incidence. The chamber
contained an Ar (90%)+CH4(10%) gas mixture at atmospheric pressure and had a
sense-wire spacing of 0.4 cm. Track lengths L between 0.8 and 20 cm were specified
and Neff was calculated for every L. The result is shown in Fig. 1.23. The choice
of L is limited on the low side by the wire spacing and on the high side by the
dynamic range of the pulse-height recording. In the case under consideration, the
overflow bin contained 1.5% of the pulses. For higher values of L this bin is sampled
more often, and the calculated number Neff begins to depend on the details of an
extrapolation of the overflow bin. A power-law fit to Fig. 1.23 shows that Neff varied
with L according to

Neff ∝ (L/1cm)0.45±0.1.

Comparing Figs. 1.22 and 1.23, we notice that the exponent is identical, within
errors, to that obtained from the theoretical cluster-size distribution. Using the power
law, which is only an empirical relation, we may obtain an estimate of the primary
ionization density, because it can be expected that the function Neff(L) becomes
equal to 1 at L = λ, the average distance between clusters.

Fig. 1.23 Neff measured with
cosmic rays as a function
of the track length L. The
last data point has the largest
dependence on the treatment
of the overflow bin (see text).
The three values correspond
to extrapolation according
to (a) a 1/PH2 law, (b) the
Landau distribution or (c) no
extrapolation, respectively
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1.3 Gas Ionization by Laser Rays

The light of a narrow pulsed laser beam that traverses a volume of gas, under
favourable conditions, is capable of ionizing the gas in the beam so that it imitates
a straight particle track. For this to occur, there must be some ionizable molecules
in the gas, and the energy density must be sufficiently high, depending on the wave-
length. In practice, a small nitrogen laser, emitting pulses of 104 W on a few square
millimetres at λ = 337nm, may be sufficient in an ordinary chamber gas that has not
been especially cleansed and therefore contains suitable molecules in some low con-
centration. This technique has the obvious advantage of producing identical tracks
in the same place. Therefore, by taking repeated measurements of the same coor-
dinate, one may form the average, which can be made almost free from statistical
variations, if only the number of repeated measurements is made large enough. In
practice 100 shots are usually sufficient. The technique has been widely used ever
since its first application in 1979 [AND 79].

Chemical compounds used for laser ionization are discussed in Sect. 12.4.

1.3.1 The nth Order Cross-Section Equivalent

The quantum energy of laser light in the visible and the near ultraviolet is much
lower than the ionization energies of molecules. It takes two or more such laser
photons to ionize the organic molecules present in the chamber gas. Multiphoton
ionization processes involving 11 photons have been observed in xenon (see the
review by Lambropoulos [LAM 76]). For the ionization of a molecule to occur, the
n photons have to be incident on the molecule during the lifetime of the intermediate
states. Then the ionization rate varies the nth power of the photon flux because
the photons act incoherently in the gas. The probability of n photons arriving in
a given time interval is equal to the nth power of the probability of each one of
them, and is therefore proportional to the nth power of the photon flux φ . Just as the
concept of ‘cross-section’ σ describes one-particle collision rates in units of cm2,
we have an ‘nth-order cross-section equivalent’ σ (n) for n-particle collisions in units
of cm2nsn−1. In a volume V containing a density N of molecules, the ionization rate
R is therefore given by the expression

R = φ n NV σ (n). (1.75)

In fact, n-photon ionization is most easily identified by a measurement of R as a
function of φ .

A light pulse with cross-sectional area A and duration T contains m photons if
the flux φ and the energy E are given by

φ = m/(AT ),

E = mhν = mhc/λ.
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Considering a traversed volume V = AL, the specific ionization per unit track length
for the n-photon process is

RT
L

=
mn

(AT )n−1 Nσ (n)

=
(

E
AT

)n

AT N

(
λ
hc

)n

σ (n).

(1.76)

In (1.76), (E/AT ) is the power density of the beam.
So far, we have implicitly assumed the duration of the light pulse to be short

compared with the inverse transition frequencies between the states involved. The
more general situation develops towards a dynamic equilibrium between excitation
and de-excitation. The case of two-photon ionization is treated in more detail in
Sect. 1.3.2.

The molecular ions created in the ionization do not as a rule resemble the par-
ent molecules very much, because they are cracked in the process. Fragmentation
patterns are complicated and usually not understood [REI 85].

1.3.2 Rate Equations for Two-Photon Ionization

For the electrons in the molecules, we distinguish the ground level (0), the inter-
mediate level (1), and the continuum ionization level (2). We denote the population
densities in the gas by P0, P1, and P2. The incident radiation stimulates transitions
0 → 1, 1 → 2, and 1 → 0, but there are also spontaneous transitions 1 → 0. Depend-
ing on the circumstances, there may be losses from level 1 into other channels. The
transition rates, denoted by k1 to k4, are determined by the incident flux and by the
internal transition mechanism.

The rate equations are written in the following form (the primes denote the time
derivatives):

P′
0(t) = −k1P0(t)+(k1 + k2)P1(t),

P′
1(t) = +k1P0(t)− (k1 + k2 + k3 + k4)P1(t),

P′
2(t) = k4P1.

(1.77)

They are symbolized in Fig. 1.24.
The rate per molecule k1 is taken to be proportional to the incoming flux φ of pho-

tons; the constant of proportionality is the cross-section σ01 for the process 0 → 1:

k1 = σ01φ . (1.78)

We want to calculate the transition rate P′
2(t) with which electrons appear in the

continuum state. It is proportional to the density P1(t) of the intermediate state, and
the corresponding rate per molecule is

k4 = σ12φ . (1.79)
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Fig. 1.24 Scheme of the
five transition rates used in
(1.77a–c)

The first two of the rate equations are a system of homogeneous linear differential
equations. Before we derive the general mathematical solution, we shall consider
some limiting cases in order to better understand the physical content of (1.77).

Before the pulse arrives, P0(0) is of the order of 1013 per cubic centimetre in a
gas having a typical concentration of the ionizing molecules of one part per million,
and P1(0) = 0. While P1(t) is slowly built up at the rate P′

1(t), we may consider
P0 as a constant as long as P1(t) has not developed into a similar order of magni-
tude. The situation of making only a few ionization electrons with the laser shot is
well described by this approximation, which treats the ground state as an infinite
reservoir.

(a) Case of P0 as an Infinite Reservoir. We may write the first two of (1.77) in the
following form:

P′
0(t) = −k1P0 +(k1 + k2)P1(t), (1.80a)

P′
1(t) = +k1P0 − (k1 + k2 + k3 + k4)P1(t). (1.80b)

The solution of (1.80b) is

P1(t) =
k1P0

∑k
(1− e−t ∑k), (1.81)

where ∑k = k1 + k2 + k3 + k4. Obviously, our approximation is always fulfilled if
k1 	 ∑k or σ01φ 	 ∑k (using (1.78)). Let us assume that this is the case. Equa-
tion (1.81) leads to a production rate of ionization equal to

P′
2(t) = k4P1(t) =

k1k4P0

∑k
(1− e−t ∑k). (1.82)

Integrated over the duration T of a constant light pulse, the total density reached at
the end of the pulse is given by
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P2(T ) =
k1k4P0

∑k

[
T − (1− e−T ∑k)

/
∑k
]
. (1.83)

In the limit of short pulses, i.e. T 	 1/∑k, the exponential may be expanded to
second order and gives us

P2(T ) → 1
2

k1k4P0T 2. (1.84)

In the limit of long pulses, i.e. T � 1/∑k, the exponential vanishes, so that

P2(T ) → k1k4P0

∑k
T. (1.85)

Expression (1.84) is proportional to φ 2, the square of the photon flux, because of
(1.78) and (1.79). This is also the case for expression (1.85) unless k1 or k2 domi-
nates ∑k. In our approximation that treats P0 as an infinite reservoir, we assume that
k1 	 ∑k; then a similar condition holds for k2 (except for special circumstances in
which σ12 is orders of magnitude larger than σ10):

P2(T ) → 1
2

σ01σ12P0φ 2T 2 (small T, small φ), (1.86)

P2(T ) → σ01σ12

k2 + k3
P0φ 2T (large T, small φ). (1.87)

(b) General Case. If we want to know what happens when the photon flux is strong,
(1.77) have to be solved in a rigorous way. This is achieved by a variable
transformation that separates the equations (see any textbook on differential
equations, for example [KAM 59].) One finds the eigenvalues s1,s2 of the ma-
trix of coefficients from the determinant

∣∣∣∣−k1 − s k1 + k2

k1 −∑k− s

∣∣∣∣= 0, (1.88)

s1,2 = −∑k + k1

2
±
[(

∑k + k1

2

)2

− k1(k3 + k4)

]1/2

. (1.89)

These two eigenvalues are real and negative; we take s2 < s1 < 0.
The solutions to the differential equations (1.77) satisfying the initial conditions

P1(0) = 0,P2(0), are given by

P0(t) =
P0(0)
s1 − s2

[−(k1 + s2)es1t +(k1 + s1)es2t ], (1.90a)

P1(t) =
P0(0)k1

s1 − s2
[es1t − es2t ], (1.90b)

P2(t) =
P0(0)k1k4

s1s2

[
1+

s2

s1 − s2
es1t − s1

s1 − s2
es2t
]
. (1.90c)
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Equation (1.90c) represents the general solution to the problem. It describes the
concentration of ionization electrons as a function of time and of the rate coefficients
k1 to k4. For small t we recover our expressions (1.84) and (1.86) by developing the
exponentials to the second order in s1t and s2t:

P2(t) →
1
2

k1k4P0(0)t2. (1.91)

For large t, using (1.89), we obtain

P2(t) →
k4

k3 + k4
P0(0). (1.92)

This enormous concentration of electrons (saturation) would imply that the ground
state has been emptied, a situation that should not concern us when we study ion-
ization tracks that are similar to particle tracks.

Equation (1.91), identical to (1.84) and (1.86), gives rise to the definition of the
second-order cross-section equivalent described in Sect. 1.3.1. For a laser shot of
duration T , identifying R/V with P2/T , we have

σ (2) =
1
2

σ01σ12T. (1.93)

Under the conditions that lead to (1.87), we have instead

σ (2) = σ01σ12/(k2 + k3), (1.94)

whereas under the most general conditions, including saturation, σ (2) depends not
only on T but also on φ .

1.3.3 Dependence of Laser Ionization on Wavelength

The ionization yield depends very much on the wavelength. Using tunable dye
lasers, Ledingham and co-workers have found an increase of four orders of mag-
nitude, when going from λ = 330nm to λ = 260nm. In Fig. 1.25 ‘clean’ counter
gas is compared with a gas seeded with a small amount of phenol. The fine
structure visible around 270 nm was resolved using high-resolution techniques
and was compared with the known single-photon UV absorption of phenol
(see Fig. 1.26).

The identical wavelength dependence is apparent. We understand this behaviour
from (1.93) and (1.94): the wavelength dependence resides almost entirely in the
factor σ01, implying that the cross-section for ionization from the intermediate level
does not vary so much. The amount of characteristic structure in the spectrum of
laser-induced resonant two-photon ionization (‘R2PI’) makes it a sensitive tool for
the identification of molecules [HUR 79].
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Fig. 1.25 Ionization induced in untreated counter gas [Ar (90%)+CH4(10%)] by a 1×1mm2

pulsed laser beam of 1μJ(×), compared with the same gas seeded with a small amount of phenol
(+) [TOW 86]

Fig. 1.26 A comparison of the laser-induced R2PI spectrum of counter gas doped with a trace of
phenol (B) and the single-photon UV absorption spectrum of phenol [TOW 86]
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1.3.4 Laser-Beam Optics

A beam of laser light that is to create ionization as if from a particle must have an
approximately constant cross-sectional area along the beam. Relations (1.75) and
(1.76) imply that, for example, in two-photon ionization a light pulse with a given
energy produces half as many ions per unit track length when it has twice the cross-
sectional area. In the interest of a constant high yield and of a narrow deposit of
ionization, one would like to have the beam width as small as possible over the
largest possible track length.

The photons in a beam occupy a volume in the four-dimensional phase space
at each point along the beam. For illustration, we consider the horizontal plane in
Fig. 1.27, where an almost parallel beam is shown to be focused into a narrow
waist by a lens. After the focus, the beam opens up again. Each photon trajectory
is represented by a point in the phase-space diagrams below where the distance
from the axis is plotted against the small angle of the trajectory with the axis. Here
we deal with geometrical optics only; the wave optical aspects are treated later. In
this sense we may regard the optical elements of the beam (lenses, mirrors, light
guides, free space, apertures) as determining a trajectory for each photon in a time-
independent fashion. Now, Liouville’s theorem in statistical mechanics states that
in such a passive system the density of photons in phase space is a constant of
motion, meaning that it does not change along the beam. As long as there are no
photons lost, the occupied volume of cross-sectional area times solid angle is the
same everywhere along the beam and the same as just behind the laser. In the phase-
space diagrams of Fig. 1.27 the envelopes containing the beam do not change their
area. A concentration of the beam in space by a focusing lens is accompanied by a
corresponding extension of the solid angle.

Fig. 1.27 Phase-space diagrams at three points along a light-beam, which is almost parallel at the
left and is focussed into B by a lens at A
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There is a principal limit of the size, in phase space, of a photon beam.
Heisenberg’s uncertainty principle of quantum mechanics states that, in each of the
two transverse dimensions separately, the limits are given by

ΔxΔ px > h/4π, (1.95)

where Δx and Δ px are the root mean square widths in space and in momentum
[MES 59] and h is Planck’s constant. Since the r.m.s. opening angle is

Δα = Δ px/p = Δ pxλ/h 	 1,

we have
ΔxΔα > λ/4π. (1.96)

An example not very far from the principal limit is provided by the situation where a
plane light-wave is delimited by an aperture, say a slit of width ±A. The diffraction
caused by the slit will open the range of the angles β of propagation behind the slit
so that approximately

|±β | ≈ 1
A

λ
2π

. (1.97)

Many lasers can be tuned to emit beams near the fundamental limit. If their wave-
length is subsequently halved by a frequency doubler, the limit refers to the old
wavelength unless the phase space and, inevitably, the power of the beam are re-
duced afterwards.

For practical purposes we work with approximate full widths Wx and Wα ,
ignoring the exact distribution of intensity across the beam, and use the order-of-
magnitude relation

WxWα > λ. (1.98)

The highest spatial concentration of light is reached in a beam focus; let it have a
width Wx. Ideally, the arrival angles of the photons do not depend on the point across
the focus; let the angular width be Wα . At a distance D behind the focus, every such
point has reached a width αD. The statistical ensemble of all the photons has a
combined width of Wtot given by

W 2
tot = W 2

x +(Wα D)2. (1.99)

The quadratic addition of these two widths is correct in the approximation that the
light intensity in the focus is a Gaussian function of both the space and the angular
coordinates. For most applications this is not far from reality.

Applying (1.98) and (1.99), the total width of a focused beam, at a distance D
away from the focus, is not smaller than

W min
tot =

[
W 2

x +
(

λD
Wx

)2
]1/2

. (1.100)

This is plotted in Fig. 1.28 as a function of D for various values of Wx.
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Fig. 1.28 The minimum
width of a laser beam at a
distance D behind a focus,
calculated for various widths
at the focus (λ = 1μm)

The technique of light-tracks simulating particle tracks is particularly well suited
for the calibration of coordinate measurements based on the pulse heights of cath-
ode strips, because they find the centre of the track. The one to several mm wide
profile of the light-beam is usually not well known, whereas the position of the
centre is much better defined. The calibration of coordinates based on drift time
measurements requires the profile to be known. First studies of the profile of light-
tracks with the aim of improving the drift-coordinate calibration were performed by
Fabretti et al. [FAB 90].
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Chapter 2
The Drift of Electrons and Ions in Gases

The behaviour of the drift chamber is crucially dependent on the drift of the
electrons and ions that are created by the particles measured or in the avalanches
at the electrodes. In addition to the electric drift field, there is often a magnetic field,
which is necessary for measuring particle momentum. Obviously we have to under-
stand how the drift velocity vector in electric and magnetic fields depends on the
properties of the gas molecules, including their density and temperature. We might
start by writing down the most general expression and then specialize to simple
practical cases. However, it is more ‘anschaulich’ to proceed in the opposite way.
We derive the simple cases first and then generalize to the more rigorous formulation
in Sect. 2.3.

2.1 An Equation of Motion with Friction

The motion of charged particles under the influence of electric and magnetic fields,
E and B may be understood in terms of an equation of motion:

m
du

dt
= eE + e[u×B]−Ku, (2.1)

where m and e are the mass and electric charge of the particle, u is its velocity vector,
and K describes a frictional force proportional to u that is caused by the interaction
of the particle with the gas. In Sect. 2.2 we will see that in terms of the more detailed
theory involving atomic collisions, (2.1) describes the drift at large t to a very good
approximation. Historically, (2.1) was introduced by P. Langevin, who imagined the
force Ku as a stochastic average over the random collisions of the drifting particle.

The ratio m/K has the dimension of a characteristic time, and we define

τ =
m
K

. (2.2)

Equation (2.1) is an inhomogeneous system of linear differential equations for the
three components of velocity.
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The solution for t � τ of (2.1) is a steady state for which du/dt = 0. The drift
velocity vector is determined by the linear equation

1
τ
u− e

m
[u×B] =

e
m

E. (2.3)

In order to solve for u, we write (e/m)Bx = ωx etc., (e/m)Ex = εx, etc., and
express (2.3) in the form of the matrix equation

Mu = ε ,

M =

⎡
⎣ 1/τ −ωz ωy

ωz 1/τ −ωx

−ωy ωx 1/τ

⎤
⎦ .

(2.4)

The solution is obtained by inverting M:

u = M−1ε ,

M−1 =

⎡
⎣ 1+ω2

x τ2 ωzτ +ωxωyτ2 −ωyτ +ωxωzτ2

−ωzτ +ωxωyτ2 1+ω2
y τ2 ωxτ +ωyωzτ2

ωyτ +ωxωzτ2 −ωxτ +ωyωzτ2 1+ω2
z τ2

⎤
⎦

× τ
1+ω2τ2 , (2.5)

where ω2 = ω2
x +ω2

y +ω2
z = (e/m)2 B2 is the square of the cyclotron frequency of

the electron. As we explain in Sect. 2.3, our solution (2.5) is equal to that obtained
in the full microscopic theory in the approximation that τ is independent of the
collision energy [see the discussion following (2.84)].

A different way of writing (2.5) is the following:

u =
e
m

τ |E| 1
1+ω2τ2 (Ê +ωτ [Ê× B̂]+ω2τ2(Ê · B̂)B̂). (2.6)

Here Ê and B̂ denote the unit vectors in the directions of the fields. The drift di-
rection is governed by the dimensionless parameter ωτ , where ω is defined as
(e/m)|B| and carries the sign of the charge of the moving particle.

For ωτ = 0, u is along E; in this case the relation has the simple form

u =
e
m

τE = μE,

μ =
e
m

τ.
(2.7)

These equations define the scalar mobility μ as the ratio of drift velocity to electric
field in the absence of magnetic field; μ is proportional to the characteristic time τ
defined in (2.2) and carries the charge sign of the particle.

In the presence of the magnetic field, the mobility is the tensor (e/m)M−1 given
in (2.5). For large positive values of ωτ and e > 0, u generally tends to be along B;
but if Ê · B̂ = 0, then large ω τ turn u in the direction of Ê× B̂, independently of
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the sign of e. Reversing the magnetic field direction causes the Ê × B̂ component
in (2.6) to change sign. Reversing the charge of the particle causes the Ê and the
(Ê · B̂)B̂ components in (2.6) to change sign.

An illustration of the directional behaviour of u is presented in Fig. 2.1a, where
the coordinate system is oriented so that the z axis is along B̂, and Ê is in the x–z
plane. A positively charged particle starting at the origin will arrive on the plane z0

at a point which belongs to a half circle over the diameter connecting the end-points
of the B̂ and Ê vectors in the z0 plane. This is so because the components of u in
these coordinates satisfy the relation

(
ux

uz
− 1

2
Ex

Ez

)2

+
(

uy

uz

)2

=
(

1
2

Ex

Ez

)2

for any ωτ . The component in the direction of Ê × B̂ is largest for ωτ = 1. In
practice one studies primarily the drift of electrons; their negative electric charge
causes a drift behaviour with respect to the E and B fields, which is illustrated in
Fig. 2.1b [DYD 04].

Both the direction and the magnitude of u are influenced by the magnetic field.
If we distinguish u(ω), the drift velocity in the presence of B, and u(0), the drift
velocity at B = 0 under otherwise identical circumstances, using (2.6) we derive

u2(ω)
u2(0)

=
1+ω2τ2 cos2 φ

1+ω2τ2 , (2.8)

where φ is the angle between E and B. This ratio happens to be the same as the
one by which the component of u along E, uE , changes with B:

uE(ω)
uE(0)

=
1+ω2τ2 cos2 φ

1+ω2τ2 . (2.9)
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Fig. 2.1 Directional behaviour of the drift velocity of a particle in the presence of an electric and
a magnetic field. Values of the parameter ωτ are indicated along the half-circle on the z0 plane:
(a) case of positive electric charge of the particle; (b) case of negative charge
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2.1.1 Case of E Nearly Parallel to B

Two cases are of special interest. The first applies to the situation where a magnetic
field is almost parallel to the electric field. Using (2.6) with E = (0, 0, Ez),B =
(Bx, By, Bz), and |Bx|, |By| 	 |Bz|, we express the drift directions in first order by

ux

uz
=

−ωτBy +ω2τ2Bx

(1+ω2τ2)Bz
,

uy

uz
=

ωτBx +ω2τ2By

(1+ω2τ2)Bz
.

(2.10)

Here the terms proportional to ωτ/(1 + ω2τ2) change sign under a reversal of
B [go back to (2.6) in order to see this]. Equations (2.10) will be used in Sect. 2.4.4
for the analysis of track distortions.

2.1.2 Case of E Orthogonal to B

The second case of interest applies to the situation where E is at right angles to B.
Using (2.6) with (Ê · B̂) = 0, E = (Ex, 0, 0), and B = (0, 0, Bz), we have

ux =
(e/m)τ

1+ω2τ2 |E|,

uy = − (e/m)τ
1+ω2τ2 ωτ |E|,

uz = 0,

tanψ ≡ uy

ux
= −ωτ.

(2.11)

From (2.11) we deduce the following for the magnitude of u:

|u| = (e/m)τ√
1+ω2τ2

|E| = e
m

τ |E|cosψ. (2.12)

The product |E|cosψ represents the component of the electric field in the drift
direction. Compared with the magnetic-field-free case (2.7), we may write the func-
tional dependence on |E| and |B| in the following form:

|u| = F(E,B) = F(E cosψ,0), (2.13)

which is also known as Tonks’ theorem [TON 55].
The expression has a simple meaning: regardless of the drift direction of the

electron, the component of the electric field along this direction determines the drift
velocity for every magnetic field. The derivation of (2.13) is based on a constant
value of τ and is experimentally verified to good precision (see Fig. 2.26). This is
discussed in more detail in Sects. 2.2.3 and 2.4.6.
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2.2 The Microscopic Picture

On the microscopic scale, the electrons or ions that drift through the gas are scat-
tered on the gas molecules so that their direction of motion is randomized in each
collision. On average, they assume a constant drift velocity u in the direction of the
electric field E (or, if a magnetic field is also present, in the direction which is given
by both fields). The drift velocity u is much smaller than the instantaneous velocity
c between collisions.

The gases we deal with are sufficiently rarefied that the distances travelled by
electrons between collisions are large in comparison with their Compton wave-
lengths. So our picture is classical and atomistic. For gas pressures above, say,
100 atm, slow-drifting electrons interact with several atoms simultaneously and re-
quire a quantum mechanical treatment [BRA 81, ATR 77].

In order to understand the drift mechanism, we derive some basic relations
between the macroscopic quantities of drift velocity u and isotropic diffusion co-
efficient D on the one hand and the microscopic quantities of electron velocity
c, mean time τ between collisions, and fractional energy loss λ on the other. The
microscopic quantities are randomly distributed according to distribution functions
treated in Sect. 2.3; in this section we deal with suitable averages. The relevant re-
lations can be expected to be correct within factors of the order of unity.

2.2.1 Drift of Electrons

Let us consider an electron between two collisions. Because of its light mass, the
electron scatters isotropically and, immediately after the collision, it has forgotten
any preferential direction. Some short time later, in addition to its instantaneous and
randomly oriented velocity c, the electron has picked up the extra velocity u equal
to its acceleration along the field, multiplied by the average time that has elapsed
since the last collision:

u =
eE
m

τ. (2.14)

This extra velocity appears macroscopically as the drift velocity. In the next en-
counter, the extra energy, on the average, is lost in the collision through recoil or
excitation. Therefore there is a balance between the energy picked up and the colli-
sion losses. On a drift distance x, the number of encounters is n = (x/u)(1/τ), the
time of the drift divided by the average time τ between collisions. If λ denotes the
average fractional energy loss per collision, the energy balance is the following:

x
uτ

λεE = eEx. (2.15)

Here the equilibrium energy εE carries an index E because it does not contain the
part due to the thermal motion of the gas molecules, but only the part taken out of
the electric field.
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One may wonder about the fact that the average time between collisions is the
same as the average time that has elapsed since the last collision. This is because
in a completely random series of encounters, characterized only by the average rate
1/τ , the differential probability f (t)dt that the next encounter is a time between t
and t +dt away from any given point t = 0 in time is

f (t)dt =
1
τ

e−t/τ dt, (2.16)

independent of the point where the time measurement begins.
Equation (2.14), as compared with (2.7), provides an interpretation and a justifi-

cation of the constant τ introduced in Sect. 2.1. In the frictional-motion picture, τ
was the ratio of the mass of the drifting particle over the coefficient of friction. In
the microscopic picture, τ is the mean time between the collisions of the drifting
particle with the atoms of the gas. For drifting particles with instantaneous velocity
c, the mean time τ between collisions may be expressed in terms of the cross-section
σ and the number density N:

1
τ

= Nσc. (2.17)

Here c is related to the total energy of the drifting electron by

1
2

mc2 = ε = εE +
3
2

kT, (2.18)

because the total energy is made up of two parts: the energy received from the
electric field and the thermal energy that is appropriate for 3 degrees of freedom
(k = Boltzmann’s constant, T = gas temperature).

For electron drift in particle detectors, we usually have εE � (3/2)kT ; we can
neglect the thermal motion, and (2.14), (2.15), and (2.18) combine to give the two
equilibrium velocities as follows:

u2 =
eE

mNσ

√
λ
2
, (2.19)

c2 =
eE

mNσ

√
2
λ

, (2.20)

where ε = (1/2)mc2 � εE � (3/2)kT .
Both σ and λ are functions of ε . (We are confident that the fractional energy loss

per collision, λ, Eq. 2.15, will not be confused with a mean free path or a wavelength
which are traditionally also called λ). One notices the important role played by the
energy loss in the collisions: with vanishing λ, the drift velocity would become
zero. If ε is below the excitation levels of the gas molecules, the scattering is elastic
and λ is approximately equal to twice the mass ratio of the collision partners (see
Sect. 2.2.2); hence it is of the order of 10−4 for electrons.

As an illustration, we show in Fig. 2.2a the behaviour of the effective cross-
sections for argon and methane, two typical counter gases used in drift chambers.
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Fig. 2.2 (a) Effective
(‘momentum transfer’) cross-
section σ(ε) for argon and
methane. (b) Fraction λ(ε) of
energy loss per collision for
argon and methane. Results
of B. Schmidt [SCH 86]; see
Sect. 2.4.1

The method of determining them will be discussed in Sect. 2.4. In both cases we
observe a clear dip near ε � 0.25eV or ε � 0.30eV. This is the famous Ramsauer
minimum [RAM 21] which is due to quantum mechanical processes in the scattering
of the electron with the gas molecule [ALL 31]. The noble gases krypton and xenon
show the same behaviour but helium and neon do not. For a more detailed discussion
on the scattering of electrons on molecules the reader is referred to [BRO 66].

The behaviour of λ(ε) for argon and methane is seen in Fig. 2.2b. The thresh-
old for excitation of the argon atom is at 11.5 eV, that for the methane molecule is
at 0.03 eV. Under these circumstances it is not surprising that the drift velocity for
electrons depends critically on the exact gas composition. Owing to the very dif-
ferent behaviour of the energy loss in molecular gases with respect to noble gases,
even small additions (10−2) of molecular gases to a noble gas dramatically change
the fractional energy loss λ (cf. Fig. 2.2b), by absorbing collision energy in the ro-
tational states. This change of λ results in an increase of the electron drift velocity
by large factors, since the fraction of drifting electrons with energy close to that of
the Ramsauer minimum increases and the average σ decreases. Also the functional
dependence u(E) is changed.
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We note that the dependence of the drift velocity and the electron energy on E
and N is always through the ratio E/N. This implies that in two gases operated with
different gas pressures and identical temperature, the E fields must be adjusted in
proportion to the gas pressures in order to obtain identical u and ε in both gases.
Reduced fields are given in units of V cm−1 Torr−1. A special unit has also been
coined: one Townsend (1 Td) is 10−17 V cm2.

In a gas mixture composed of two or more components i with number densities
ni, the effective cross-section σ(ε) and the effective fractional energy loss per colli-
sion λ(ε) have to be calculated from the properties of the individual components:

σ(ε) = ∑niσi(ε)/N,

λ(ε)σ(ε) = ∑niλi(ε)σi(ε)/N, (2.21)

N = ∑ni.

The general behaviour of electron drift velocities is that they rise with increasing
electric field, then level off or decrease as a result of the combined effects of σ(ε)
and λ(ε) as ε increases with increasing E. Examples will be presented in Sect. 2.4
and in Chap. 12.

2.2.2 Drift of Ions

The behaviour of ions differs from that of electrons because of their much larger mass
and their chemical reactions. The monograph by McDaniel and Mason
[MCD 73] deals with the mobility and diffusion of ions in gases in a comprehen-
sive way. Electrons in an electric field are accelerated more rapidly than ions, and
they lose very little energy when colliding elastically with the gas atoms. The electron
momentum is randomized in the collisions and is therefore lost, on the average. In
electric field strengths that are typical for drift chambers, the electrons reach random
energies far in excess of the energy of the thermal motion, and quite often they surpass
the threshold of inelastic excitation of molecules in the gas. In this case their mobility
becomes a function of the energy loss that is associated with such excitation.

Ions in similar fields acquire, on one mean-free path, an amount of energy that
is similar to that acquired by electrons. But a good fraction of this energy is lost in
the next collision, and the ion momentum is not randomized as much. Therefore, far
less field energy is stored in random motion. As a consequence, the random energy
of ions is mostly thermal, and only a small fraction is due to the field. The effect
on the diffusion of ions results in this diffusion being orders of magnitude smaller
than that of electrons in similar fields. The effect on the mobility is also quite inter-
esting: since the energy scale, over which collision cross-sections vary significantly,
is easily covered by the electron random energies reached under various operating
conditions, we find rapid and sometimes complicated dependences of electron mo-
bility on such operating conditions – electric and magnetic field strengths and gas
composition being examples. In contrast, the mobility of ions does not vary as much.
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In order to understand the randomization in more quantitative terms, we consider
the elastic scattering of an ion (or electron) with a molecule of the gas, neglecting
the thermal motion.

Elastic Scattering and the Average Losses of Energy and Momentum. We consider
the scattering of two particles with masses m and M in their centre-of-mass (c.m.)
system in which the incoming momenta are equal and opposite and are denoted by
p. In the laboratory frame, M was initially at rest, and the incoming particle had
momentum P (see Fig. 2.3). The two frames are transformed into each other by the
velocity vvv = P /(M +m).

For elastic scattering, we have |p′| = |p| = M|vvv| = p. The loss of momentum of
particle M along its direction of motion is, in the c.m. system, equal to

p(1− cosθ),

and invariant under the Galilean transformation. At our low momenta the scatter-
ing is isotropic, and after averaging over the angles we find the average fractional
momentum loss κ:

κ =
p
P

=
M

M +m
. (2.22)

Similarly, the square of the momentum transfer – equally invariant – is

(p−p′)2 = 2p2(1− cosθ).

It is equal to the square of the laboratory momentum of the particle initially at rest;
therefore its kinetic energy is E ′

kin = p2(1 − cosθ)/M. After averaging over the
angles, the fractional energy loss λ is the ratio of this kinetic energy to that of the
other (incoming) particle in the laboratory system:

λ =
p2

M
2m
P2 =

2mM
(M +m)2 . (2.23)

We are now in a position to go through the arguments of Sect. 2.2.1 again, apply-
ing them to ions.

Expressions for the Mobility of Ions. Let us consider an ion between two collisions.
Because of its heavy mass it does not scatter isotropically. Immediately after the
collision, superimposed over the random velocity cr there is a component cd in the
drift direction. Some short time later, it has, in addition, picked up the extra velocity

Fig. 2.3 Momentum diagrams for the collision of the drifting particle (mass m) with a gas
molecule (mass M) in the centre of mass and in the rest frame of the molecule
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v equal to the acceleration of the ion along the field, multiplied by the average time
that has elapsed since the last collision. The drift velocity is the sum of v and cd:

u = vvv +cd =
eE
m

τ +cd. (2.24)

The value of cd is given by the average momentum loss in the direction of the
drift that takes place in the next encounter; it must be equal to the momentum mv
picked up between the encounters:

κm〈cr +cd +vvv〉 = κm(cd +vvv) = mvvv, (2.25)

where the brackets 〈 〉 denote the average over the angles. For the magnitude of cd

we calculate cd = v(1−κ)/κ , and for the drift velocity (using (2.22)),

u = v + cd =
v

κ
=

e
m

Eτ
1
κ

=
e
m

Eτ
(

1+
m
M

)
. (2.26)

Here τ is given by the relative velocity crel between the ion and the gas molecule,
the cross-section σ , and the number density N as

1
τ

= Nσcrel. (2.27)

We now distinguish two limiting cases of field strength E. If it is low so that the
ion random velocity is thermal, we must take for the relative velocity the average
magnitude of the difference between the two randomly distributed velocities of the
ion (cion) and the gas atoms (cgas):

crel = 〈|cion −cgas|〉 = (c2
ions + c2

gas)
1/2. (2.28)

With equipartition of energy, we can express crel through the temperature T and
Boltzmann’s constant k:

c2
rel = c2

ion + c2
gas = 3kT

(
1
m

+
1
M

)
. (2.29)

Using (2.26, 2.27), and (2.29), we obtain

u =
(

1
m

+
1
M

)1/2( 1
3kT

)1/2 eE
Nσ

(low E). (2.30)

It is characteristic of the drift velocity at low fields that it is proportional to E, or
that the mobility is independent of E.

For the case of large E, where we can neglect the thermal motion, we pro-
ceed as in the case of electrons (where the temperature was always neglected). By
combining (2.15, 2.17, 2.24), and (2.26), we solve for u2 and c2 and obtain the
symmetric forms
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u2 =
eE

m∗Nσ

(
λ
2

m
m∗

)1/2

(2.31)

and

c2 =
eE

m∗Nσ

(
2
λ

m
m∗

)1/2

, (2.32)

where the ‘reduced mass’ m∗ between the ion (m) and the gas molecule (M) is
defined as

1
m∗ =

1
m

+
1
M

. (2.33)

Using (2.23), we may express λ for elastic scattering through the ratio of the masses,
with the result that

u =
[

eE
mNσ

]1/2 [m
M

(
1+

m
M

)]1/2
(high E). (2.34)

It is characteristic of the drift velocity at high fields and constant cross-section σ
that it is proportional to the square root of E, or the mobility decreases as 1/

√
E.

The distinction between ‘high’ and ‘low’ E in (2.30) and (2.34) is obviously with
respect to the field in which the ion, over one mean free path, picks up an amount
of energy equal to the thermal energy. The measured ion drift velocities for noble
gases shown in Fig. 2.4 exhibit very well the limit in behaviour of (2.30) and (2.34)
with the electric field.

Table 2.1 contains ion mobilities for low fields that were measured in the noble
gases. Various approximation methods for the calculation of cross-sections in the
scattering of ions on molecules have been treated elsewhere [MCD 73]. When ions
travel in their parent gas, the original collision cross-section is increased by about a
factor of two by the mechanism of resonant charge transfer.

Ion Drift in Gas Mixtures. The gas of a drift chamber is often a composition of two
or more constituents. Ion drift in gas mixtures can be understood along the lines of
the last subsection. We want to modify (2.26) for the case where one type of ion
(mass m) moves between the atoms or molecules with masses Mk(k = 1,2, . . .) each
present in the gas with its own number density Nk. The gas number density N is
equal to the sum over all the Nk. The resulting drift velocity in the field E is called
ū; it is equal to

ū =
e
m

E τ̄
1
κ̄

. (2.35)

Here τ̄ is the mean time between collisions, and κ̄ is the mean fractional momentum
loss in the mixture; they are both quickly calculated from the τk and κk that belong
to each constituent. The overall collision rate is the sum of the individual collision
rates, or

1/τ̄ = ∑(1/τk). (2.36)

The overall momentum loss is the average over all the κk, weighted with the relative
rates with which each type of molecule is bombarded:
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Fig. 2.4 Drift velocity u of positive noble gas ions in their own gas as functions of the reduced
electric field. The limiting behaviour at low fields (u ∝ E) and at high fields (u ∝

√
E) is visible

[LAN 57]

κ̄ = ∑(κk/τk)
∑(1/τk)

. (2.37)

Combining (2.35) to (2.37), we obtain

ū =
e
m

E
1

∑(κk/τk)
. (2.38)

Table 2.1 Experimental low-field mobilities of various noble gas ions in their parent gas [MCD 73]

Gas Ion Mobility

(cm2 V
−1

s−1)

He He+ 10.40±0.10
Ne Ne+ 4.14±0.2a

Ar Ar+ 1.535±0.007
Kr Kr+ 0.96±0.09
Xe Xe+ 0.57±0.05
a Average over several measurements
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This equation can be cast into a form that is known as Blanc’s law if we denote by
uk the drift velocity of the ion in the pure component k at the full density N:

uk =
e
m

E
τk

κk

Nk

N
, (2.39)

where we have used (2.17). Expressions (2.38) and (2.39) give us Blanc’s law:

1
ū

= ∑ Nk

N
1
uk

; (2.40)

it states that the inverse drift velocities in the individual gas components add in
proportion to the relative component densities to yield the inverse drift velocity of
the mixture.

Blanc’s law holds for the case of low electric fields. The case of high fields is
slightly more complicated because the energy partition of the drifting ion into ran-
dom and directed motion must be taken into account. The reader is referred to the
monograph of McDaniel and Mason [MCD 73].

In practice, (2.40) is quite well fulfilled. In Fig. 2.5 we show mobilities, mea-
sured by the Charpak group [SCH 77], as functions of the relative gas concentration
for several binary mixtures of argon with the common quench gases: isobutane,
methane, and carbon dioxide.

Fig. 2.5 The inverse of the
mobility of the positive
molecular ions as a func-
tion of the relative volume
concentration of the two com-
ponents in three gas mixture.
Measurements by [SCH 77]
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The production of positive ions in molecular gases is a fairly complex phe-
nomenon, and without a clear identification – perhaps using a mass spectrometer –
one is usually ignorant of the identity of the migrating charged bodies. For the pur-
poses of drift chambers it often suffices to know their drift velocities. However, the
chemical deposits on the wire electrodes, as a result of chamber operation, can be
evaluated with more complete knowledge about which ions really migrate toward
the cathodes.

One must read Table 2.2, which contains measured ion mobilities, with these
remarks in mind. For example, the notation ‘[(OCH3)2CH2]

+’ means the ion(s) trav-
elling towards the cathode in a mixture of argon + methylal. It is assumed here that
the argon ions that are created simultaneously transfer their charge to the methylal
molecules, thus creating more ‘[(OCH3)2CH2]

+’ ions. This is elaborated below.

Charge Transfer. When the migrating ions in a drift chamber collide with molecules
that have an ionization potential smaller than the energy available in the ion, there is
the possibility that a charge-exchange process takes place, which neutralizes the ion
and creates a new ion. This process happens with cross-sections that are of a similar
order of magnitude to the other ion–molecule scattering cross-sections. Therefore
the rate of ion transformation through charge transfer is correspondingly high and
proportional to the concentration of the molecules to be ionized.

The Charpak group have found that 1% of methylal added to binary argon +
isobutane mixtures made a significant change in the ion mobility over 2 cm of drift in
their field (a few hundred to a thousand V/cm). This has to be interpreted as a charge
transfer process from the ions in the original mixture to the methylal molecules,
thus creating ‘[(OCH3)2CH2]+’ ions with lesser mobility. Their result [SCH 77] is
presented in Fig. 2.6, where the inverse measured mobility is plotted against the den-
sity of the various binary and ternary mixtures. Straight lines correspond to Blanc’s
law; they connect mixtures in which the migrating ion(s) is (are) supposedly the
same. We must therefore imagine the motion of ions in drift chambers as a dynamic
process in which the various ionic species, which were originally produced in the
avalanches or any other collision process, disappear quickly and leave only the one
type that has the lowest ionization potential.

Table 2.2 Measured mobilities of various ions in some gases used in drift chambers [SCH 77]

Ion notation Gas Mobility

(cm2 V
−1

s−1)

[CH4]+ Ar 1.87
[CO2]+ Ar 1.72
[IsoC4H10]+ Ar 1.56
[(OCH3)2CH2]

+ Ar 1.51
[CH4]+ CH4 2.26
[CO2]+ CO2 1.09
[IsoC4H10]+ IsoC4H10 0.61
[(OCH3)2CH2]

+ IsoC4H10 0.55
[(OCH3)2CH2]

+ (OCH3)2CH2 0.26
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Fig. 2.6 Inverse mobility of ions in binary and ternary gas mixture composed of
argon–isobutane–methylal, measured by [SCH 77] and plotted as a function of the gas density. A:
argon–methylal; B to E: argon–isobutane–methylal, with argon in different proportions (B: 80%,
C: 70%, D: 60%, and E: 50%) F: argon–isobutane. The numbers close to the experimental points
represent the percentage concentration of methylal (A to E) or isobutane (F), respectively

Practical drift chamber gases – apart from the principal components that were
intentionally mixed together by the experimenter – always contain some impu-
rities; they are difficult to control below the level of 10−4. The mere fact that
pulsed lasers of modest energy are capable of producing ionization in ‘clean’ gas
(see Sect. 1.3 for details) is proof of the presence of impurities with low ioniza-
tion potentials. It would obviously be interesting to know the identity of migrating
ions at the end of the 2-m-long drift space of a large time projection chamber
(TPC).
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2.2.3 Inclusion of Magnetic Field

When we consider the influence of a magnetic field on drifting electrons and
ions, the first indication may be provided by the value of the mobility μ of these
charges. In particle chamber conditions, this is of the order of magnitude of μ �
104 cm2 V

−1
s−1 for electrons (see Fig. 2.17 and use (2.7)), whereas for ions the

order of magnitude is μ = 1cm2 V
−1

s−1 (see Tables 2.1 and 2.2). Typical magnetic
fields B available to particle experimenters are limited, so far, by the magnetic sus-
ceptibility of iron, and the order of magnitude is 1 T or 10−4 V s cm−2. We know
from Sect. 2.1 that it is the numerical value of ωτ = (e/m)Bτ that governs the ef-
fects of the magnetic field on the drift velocity vector. Using (2.7), which stated that
μ = (e/m)τ , we find

ωτ = Bμ �
{

10−4 for ions

1 for electrons

in order of magnitude. Therefore, the effect of such magnetic fields on ion drift is
negligible, and we concentrate on electrons. This has the advantage that we may
assume that the colliding body scatters isotropically in all directions, owing to its
small mass.

When the magnetic field is added to the considerations of Sect. 2.2.1, we can
describe the most general case in a coordinate system in which B is along z, and E
has components Ez and Ex. An electron between collisions moves according to the
equation of motion,

m
dvvv
dt

= eE + e[vvv×B], (2.41)

which in our case is written as

v̇x = εx +ωvy,

v̇y = −ωvx,

v̇z = εz,

(2.42)

where ω ≡ (e/m)B and ε ≡ (e/m)E. Electrons have their direction of motion ran-
domized in each collision, and we are interested in the extra velocity picked up by
the electron since the last collision. Hence we look for the solution of (2.42) with
vvv = 0 at t = 0. It is given by

vx(t) = (εx/ω)sin ωt,

vy(t) = (εx/ω)(cos ωt −1),

vx(t) = εzt.

(2.43)

Before we can identify v with the drift velocity, we must average over t, using (2.16),
the probability distribution of t. This was also done when deriving (2.14), which,
being a linear function of time, required t to be replaced by τ , the mean time since
the last collision. The drift velocity for the present case is given by
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ux = 〈vx(t)〉 =
εx

ω

∞∫
0

1
τ

e−t/τ sin ωt dt =
εxτ

1+ω2τ2 ,

uy = 〈vy(t)〉 =
εx

ω

∞∫
0

1
τ

e−t/τ(cos ωt −1)dt =
−εxωτ2

1+ω2τ2 , (2.44)

uz = 〈vz(t)〉 = εz

∞∫
0

1
τ

e−t/τ dt = εzτ .

We immediately recognize that the result is the same as for (2.5) and (2.6), de-
rived from the macroscopic equation of motion using the concept of friction. The
mobility tensor (2.5) is therefore the same in the macroscopic and the microscopic
picture. It will only have to be modified in Sect. 2.3, where the electron velocity has
a probability distribution over a range of values, rather than a single value.

We can now state the condition of energy balance in the presence of a magnetic
field. If the angle between the two fields is φ , the energy transferred to the electron
per unit distance along E, equal to the corresponding collision loss, is

eE =
1
2

λmc2

uE(ω)τ
=

1
2

λm2c2(1+ω2τ2)
eEτ2(1+ω2τ2 cos2 φ)

. (2.45)

Here we have used (2.9). On the other hand, the square of the drift velocity was
given by (2.7) and (2.8),

u2 =
( e

m
Eτ
)2 1+ω2τ2 cos2 φ

1+ω2τ2 . (2.46)

The two expressions (2.45) and (2.46) determine the two equilibrium velocities u
and c. First we notice that the ratio

u2

c2 =
λ
2

(2.47)

is given by the fractional energy loss per collision alone; in particular, it is inde-
pendent of both fields. In the situation without magnetic field, the two electron
velocities were determined by the cross-section and the energy loss in (2.19) and
(2.20). With magnetic field, the corresponding relations are more complicated ow-
ing to the presence of the terms proportional to ω2τ2 = ω2/(N2σ2c2). Whereas in
the most general case (2.45) and (2.46) could be solved for c2 by a graphical or
numerical method, we present the closed solution for two important practical cases.

Case of E Parallel to B. The first case concerns the drift volume of the TPC; here
we have cos2 φ = 1 and therefore

c2 eE
mNσ

√
2
λ

, (2.48)

exactly as in the absence of magnetic field.
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Case of E Orthogonal to B. The second case concerns the drift volume of the axial
wire drift chamber, where cos2 φ = 0; here

c2 =

[(
eE

mNσ

)2 2
λ

+
(

ω2

2N2σ2

)2
]1/2

−
[

ω2

2N2σ2

]
. (2.49)

We note that the random velocity c is reduced in the presence of a magnetic field
orthogonal to E. The same is true for the drift velocity because of (2.47). Any two
values of E and B that produce the same solution for c in (2.49) lead to the same
drift velocity. In particular, if E1 is the electric field that produces certain values of
c and u in the absence of magnetic field (B1 = 0), then there is a corresponding E2

for the same values of c and u at some non-zero B2. In order to find an expression
for E2 in terms of E1 and B2, we rewrite (2.49) for the two pairs of fields in the
following form:

−
(

eE1

mNσ

)2 2
λ

+ c4 = 0,

(
ecB2

mNσ

)2

−
(

eE2

mNσ

)2 2
λ

+ c4 = 0.

(2.50)

Note that λ and σ are the same in both cases because they are functions of c alone.
From (2.50) we deduce that

E2
2 = E2

1

[
1+
(

eB2

cmNσ

)2
]

= E2
1 (1+ω2

2 τ2), (2.51)

which is the microscopic justification for (2.12) and (2.13). One cannot understand
(2.12) from a derivation using a constant friction term τ because τ does not remain
constant when E is varied (see (2.7) and Fig. 2.17). Rather, as we have seen, τ also
depends on B in such a way that it comes back to its old value for the appropriate
combination of B and E.

Next, we wish to evaluate (2.49) for large values of the B field. In the limit
ωτ � 1 the second term in the square root of (2.49) becomes much larger com-
pared to the first term (using (2.46) and (2.47) it can be shown that the two terms
are equal when ωτ � 2.2), and we have to first order in 1/ωτ

c2 =
(

eE
mω

)2 2
λ

, (2.52)

u2 =
(

eE
mω

)2

, u =
E
B

, (2.53)

which is remarkable because c no longer depends on σ .
Equation (2.53) has the following significance. In the presence of a magnetic

field B, orthogonal to E and strong enough for ωτ to be large, the drift velocity u
approaches a universal value E/B, which is the same for all gases.
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In order to study the deviations from the universal expression (2.53), we may
carry the expansion of the square root in (2.49) to the second order. Using (2.47)
and (2.53) we find

u =
E
B

(
1− 1

ω2τ2

)
(ωτ � 1). (2.54)

This means that the universal limit (2.53) is approached rapidly from below as B is
increased.

This physical content of (2.53) can best be understood by comparison with the
motion of an electron in vacuo: under the influence of crossed electric and magnetic
fields, the electron is accelerated by the E field and bent by the B field; it performs
a cycloidal motion in the plane orthogonal to B (see (2.43) and Fig. 2.7). When
averaging over the periodic part, one finds that the electron drifts with the constant
speed E/B in the direction of −Ê × B̂. This motion in vacuo is the limit of the
gas drift for large values of ωτ , the mean number of turns (expressed in radians)
between collisions. Experimentally it can be reached either by increasing the B field
or by reducing the gas density, which is roughly proportional to 1/τ .

2.2.4 Diffusion

As the drifting electrons or ions are scattered on the gas molecules, their drift ve-
locity deviates from the average owing to the random nature of the collisions. In the
simplest case the deviation is the same in all directions, and a point-like cloud of

Fig. 2.7 Motion of an elec-
tron in vacuo under the
influence of orthogonal E
and B fields: B goes out of the
paper, the electron stays in the
plane of the paper
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electrons which then begins to drift at time t = 0 from the origin in the z direction
will, after some time t, assume the following Gaussian density distribution:

n =
(

1√
4πDt

)3

exp

(
−r2

4Dt

)
, (2.55)

where r2 = x2 + y2 + (z− ut)2; D is the diffusion constant because n satisfies the
continuity equation for the conserved electron current Γ :

Γ = nu−D∇n, (2.56)

∂n
∂ t

+∇ ·Γ = 0, (2.57)

∂n
∂ t

+n∇ ·u−D∇2n = 0. (2.58)

The diffusion constant D, defined by (2.56), makes the mean squared deviation of
the electrons equal to 2Dt in any one direction from their centre. (This is a special
case of (2.75), which deals with the case of anisotropic diffusion.)

In order to express the diffusion constant in terms of the microscopic picture, we
suppose that one electron or ion starts at time t = 0 and has a velocity c; hence,
according to (2.16), there is probability distribution of free path l equal to

g(l)dl =
1
l0

e−l/l0dl, (2.59)

where l0 = cτ is the mean free path. The simplest case is the one where scattering
is isotropic with respect to the drift direction. We consider this case first. It applies
to ions at low electric fields E(E/(Nσ) 	 kT ) and, to a good first approximation,
to electrons.

Consider a time t at which a large number, n, of encounters have already oc-
curred; then n = t/τ . The mean square displacement in one direction, say x, is

∫ ( n

∑
1

li cosθi

)2 n

∏
1

g(lk)dlk
d cosθk

2
= n

2
3

l2
0 =

2
3

l2
0

τ
t. (2.60)

Hence li cosθi is the displacement along x between the (i− 1)th and the ith colli-
sion (Fig. 2.8); the cosθi are uniformly distributed between −1 and +1 according
to our assumption. The li are distributed with the probability density (2.59). Note
that the mixed terms in the sum vanish. The part proportional to 2t is the diffusion
coefficient D,

D =
l2
0

3τ
=

cl0
3

=
c2τ
3

=
2
3

ε
m

τ. (2.61)

Recalling the expression for the electron mobility μ ,

μ =
e
m

τ,
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Fig. 2.8 Electron paths for
the derivation of (2.60)

we notice that the electron energy can be determined by a measurement of the
ratio D/μ :

ε =
3
2

De
μ

. (2.62)

When the diffusing body has thermal energy, ε = (3/2)kT , (2.62) takes the form

D
μ

=
kT
e

,

which is known as the Nernst–Townsend formula, or the Einstein formula. (For his-
torical references, see [HUX 74].)

The energy determines the diffusion width σx of an electron cloud which, after
starting point-like, has travelled over a distance L:

σ2
x = 2Dt =

2DL
μE

=
4εL
3eE

. (2.63)

In drift chambers we therefore require small electron energies at high drift fields
in order to have σ2

x as small as possible. In the literature one finds the concept of
characteristic energy, εk, which is related to our ε by the relation εk = (2/3)ε .

In Fig. 2.9 we show the variation of εk with the electric field strength, measured
with electrons drifting in the two gases, argon and carbon dioxide, which repre-
sent somewhat extreme cases concerning the change-over from thermal behaviour
to field-dominated behaviour. In argon a field strength as low as 1 V/cm produces
electron energies distinctly larger than thermal (‘hot gas’). In carbon dioxide the
same behaviour occurs only at field strengths above 2 kV/cm (‘cold gas’). The rea-
son is a large value of the relative energy loss λ in CO2, due to the internal degrees
of freedom of the CO2 molecule, which are accessible at low collision energies.
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Fig. 2.9 Characteristic energy
of electrons in Ar and CO2
as a function of the reduced
electric field. The electric
field under normal condi-
tions is also indicated. The
parameters refer to the dif-
ferent temperatures at which
the measurements were made
[SCH 76]

The fractional energy loss λ was introduced in Eq. 2.15 and played a decisive role
throughout Sect. 2.2.

For ions and electrons with thermal energy ε = (3/2)kT , (2.63) shows that the
diffusion width of a cloud is independent of the nature of the gas and is proportional
to the square root of the absolute temperature: the ‘thermal limit’ is given by

σx =
(

2kT L
eE

)1/2

. (2.64)

2.2.5 Electric Anisotropy

Until 1967 it had always been assumed that the diffusion of drifting electrons in
gases has the isotropic form implied by (2.55). But then Wagner et al. [WAG 67]
discovered experimentally that the value of electron diffusion along the electric field
can be quite different from that in the perpendicular direction. The diffusion of drift-
ing ions is also often found to be non-isotropic.

When ions collide with the gas molecules, they retain their direction of motion
to some extent because the masses of the two collision partners are similar, and
therefore the instantaneous velocity has a preferential direction along the electric
field (see Sect. 2.2.2). This causes the diffusion to be larger in the drift direction; the
mechanism is at work for ions travelling in high electric fields E(eE/(Nσ) ≥ kT ),
and we do not treat it here because it plays no role in the detection of particles.

In the case of electrons, there is almost no preferential direction for the instan-
taneous velocity. We will describe the electron diffusion anisotropy following the
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semiquantitative treatment of Partker and Lowke [PAR 69], which is restricted to
energy loss by elastic collisions. The essential point of the argument is that the mo-
bility of the electrons assumes different values in the leading edge and in the centre
of the travelling cloud if the collision rate is a function of electron energy. This
change of mobility inside the cloud is equivalent to a change of diffusion in the
longitudinal direction.

We express the energy balance (2.15) in the drifting cloud more precisely by
making use of the electron current introduced in (2.51); it now contains the diffu-
sion term D∇n. Let the drift be in the z direction (E = Eẑ). Using the collision
frequency ν ≡ 1/τ instead of τ and dropping the index from ε , the energy balance
takes the form

nνλε = eE ·Γ = eμE2n− eED
∂n
∂ z

, (2.65)

where ν , μ , λ and D are functions of ε . In principle, we can solve this equation
for ε in terms of (1/n)(∂n/∂ z). Here we will put λ constant, as it is in the case of
elastic scattering, and develop ν(ε) around the equilibrium point, which is given
when ∂n/∂ z = 0:

ε0 =
1

mλ

(
eE
ν0

)2

.

The functions D and m are approximated by their expressions (2.61) and (2.62).
Putting ε = ε0 + Δε and ν = ν0 + (∂ν/∂ε)Δε in (2.65), the variation of energy
inside the cloud can be expressed to first order as

Δε = − 2ε2
0

3eE[1+2(∂ν/∂ε)0(ε0/ν0)]
1
n

∂n
∂ z

, (2.66)

(∂ν/∂ε)0 being the derivative of the collision frequency with respect to the energy,
evaluated at ε0. Equation (2.66) shows that ε is larger in the leading edge of the cloud
and smaller in the trailing edge, and from (2.62) it follows that – unless (∂ν/∂ε) =
0 – the mobility μ also is a function of position in the cloud (see Fig. 2.10):

μ = μ0

(
1
ν0

∂ν
∂ε

Δε
)

.

We now rearrange the terms in the expression for the electron current and find

Γ = μ0Enẑ−D

(
∂n
∂x

x̂+
∂n
∂y

ŷ

)
−D

(
1− γ

1+2γ

)
∂n
∂ z

ẑ,

where γ ≡ (ε0/ν0)(∂ν/∂ε). Obviously the diffusion in the drift direction has
changed and is no longer equal to the diffusion in the perpendicular direction. We
distinguish the two diffusion coefficients by the indices L and T. The ratio is

DL

DT
=

1+ γ
1+2γ

. (2.67)
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Fig. 2.10 Mobility variation
inside an electron cloud trav-
elling in the z direction

Instead of the density distribution (2.55) of the diffusing cloud of electrons, we have
in the anisotropic case

n =
1√

4πDLt

(
1√

4πDTt

)2

exp

[
−x2 + y2

4DTt
− (z−ut)2

4DLt

]
. (2.68)

2.2.6 Magnetic Anisotropy

Let us now consider the effect of a magnetic field B along z. The electric field is
in the x − z plane and we assume there is no electric anisotropy. The magnetic
field causes the electrons to move in helices rather than in straight lines between
collisions. Projection onto the x− y plane yields circles with radii

ρ =
c
ω

sinθ , (2.69)

where ω = (e/m)B is the cyclotron frequency of the electron, c its velocity and θ
the angle with respect to the z axis. Projection onto the x− z plane yields sinusoidal
curves. Figure 2.11a, in contrast to Fig. 2.8, shows how the random propagation
of the electron is diminished by the magnetic field. We must repeat our calculation
(2.60) with the new orbits.
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Fig. 2.11 (a) Electron paths causing the magnetic anisotropy of diffusion. (b) First part of the
trajectory showing the direction projected into the x− y plane

Looking at Fig. 2.11b we describe the motion of the electron which has suffered
a collision at the origin by the orbit

x(l) = ρ
[

sin

(
ωl
c

−φ
)

+ sinφ
]
,

y(l) = ρ
[

cos

(
ωl
c

−φ
)
− cosφ

]
,

z(l) = l cosθ ,

(2.70)

where l is the length of the trajectory and φ is the starting direction in the x− y
plane. More precisely, the derivatives with respect to l at the origin, giving the initial
direction of the electron, are the following:

x′(0) = sinθ cosφ ,

y′(0) = sinθ sinφ ,

z′(0) = cosθ .

The mean square displacement of the electron after the first collision is given
by an integration over the solid angle and over the distribution (2.59) of path
lengths:

〈x2〉 =
1

4πl0

∫
e−l/l0x2(l)dφdcosθ dl (2.71)

and similarly for 〈y2〉 and 〈z2〉. It is not difficult to integrate (2.71), using (2.70) and
(2.69). The result is
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〈x2〉 = 〈y2〉 =
2
3

l2
0

1+ω2l2
0/c

=
2
3

l2
0

1+ω2τ2 ,

〈z2〉 =
2
3

l2
0 .

In comparison to (2.60), the magnetic field has caused the diffusion along x and y
(then perpendicular to the magnetic field) to be reduced by the factor

DT(ω)
DT(0)

=
1

1+ω2τ2 , (2.72)

whereas the longitudinal diffusion is the same as before:

DL(ω) = DL(0). (2.73)

If there is an E field as well as a B field in the gas, the electric and magnetic
anisotropies combine. In the most general case of arbitrary field directions, the diffu-
sion is described by a 3×3 tensor: let the B field be along the z axis of a right-handed
coordinate system S, and let the drift direction û, which is at an angle β with respect
to B, have components along ẑ and x̂. The electric anisotropy is along û, and the dif-
fusion tensor is diagonal in the system S′ which is rotated around ŷ by the angle β .

In order to describe the two anisotropies in S, we must transform the diagonal
tensor S′ to S before we multiply by the diagonal tensor that represents the magnetic
anisotropy. If the electric anisotropy is equal to DL/DT and the magnetic one is
equal to D(0)/D(ω) = 1/η , we get for the combined tensor S

Dik =

⎛
⎝ cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

⎞
⎠
⎛
⎝DT 0 0

0 DT 0
0 0 DL

⎞
⎠
⎛
⎝ cosβ 0 −sinβ

0 1 0
sinβ 0 cosβ

⎞
⎠

×

⎛
⎝η 0 0

0 η 0
0 0 1

⎞
⎠ ,

Dik =

⎛
⎝η(DT cos2 β +DL sin2 β ) 0 (DL −DT)sinβ cosβ

0 DT 0
η(DT −DT)sinβ cosβ 0 DT sin2 β +DL cos2 β

⎞
⎠ . (2.74)

The importance of diffusion for drift chambers is in the limitation for the co-
ordinate measurement. Hence, we are interested in the deviation along a given
direction of an electron that has been diffusing for a time t. We treat the gen-
eral case of a diffusion tensor Di j and a direction α̂ given by the three cosine
αk(α2

1 + α2
2 + α2

3 = 1), both expressed in the same coordinate system. We make
use of the continuity equation (2.58) for the density n(x1,x2,x3), normalized so that∫

n dx = 1. For a time-independent and homogeneous field the drift velocity is
constant, and we have
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dn
dt

= Dik
∂ 2n

∂xi∂xk

(summation over identical indices is always understood). The rate of the mean
square deviation along x′ = αix j is given by

d〈x′2〉
dt

=
+∞∫

−∞

(αixi)2 dn
dt

dx =
+∞∫

−∞

αiα jxix jDnm
∂ 2n

∂xn∂xm
dx = 2αiα jDi j.

In the last integral all the 81 terms vanish except when the powers of the xi match
the powers of the derivatives: one shows by two partial integrations that

+∞∫
−∞

xix j
∂ 2n

∂xn∂xm
dx = 2δimδ jn,

where δik = 1 if i = k, and zero otherwise. We have used the fact that electron density
and its derivatives vanish at infinity

If a point-like ensemble of electrons begins to diffuse at time zero, then after a
time t it has grown so that the mean square width of the cloud in the direction α has
the value

〈x′2〉 = 2αiα jDi jt. (2.75)

The isotropic case in which x′2 is independent of α̂ is obviously given by a Di j

which is the unit matrix multiplied with the isotropic diffusion constant. The factor
2 in (2.75) is also present in (2.55) and in the comparison between (2.60) and (2.61).
Equation (2.75) implies that the width of the cloud is calculated only from the sym-
metric part of Di j; furthermore, the diffusion tensor must be positive definite, other-
wise our cloud would shrink in some direction–a thermo-dynamic impossibility.

2.2.7 Electron Attachment

During their drift, electrons may be absorbed in the gas by the formation of negative
ions. Whereas the noble gases and most organic molecules can form only stable
negative ions at collision energies of several electronvolts (which is higher than the
energies reached during the drift in gas chambers), there are some molecules that
are capable of attaching electrons at much lower collision energies. Such molecules
are sometimes present in the chamber gas as impurities. Among all the elements,
the largest electron affinities, i.e. binding energies of an electron to the atom in
question, are found with the halogenides (3.1–3.7 eV) and with oxygen (∼0.5eV).
Therefore we have in mind contaminations due to air, water, and halogen-containing
chemicals.

Our account must necessarily be brief; for a thorough discussion of the atomic
physics of electron attachment, the reader is referred to Massey et al. [MAS 69].
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Modern developments may be followed in the Proceedings of the International
Conference on the Physics of Electronic and Atomic Collisions, see especially
[CHR 81]. One distinguishes two-body and three-body processes.

The two-body process involves a molecule M that may or may not disintegrate
into various constituents A, B, . . ., one of which forms a negative ion:

e− +M → M−

or
e− +M → A− +B+ . . .

The break-up of the molecule owing to the attaching electron is quite common and
is called dissociative attachment. The probability of the molecule staying intact is
generally higher at lower electron energies. The rate R of attachment is given by the
cross-section σ , the electron velocity c, and the density N of the attaching molecule:

R = cσN = kN. (2.76)

The rate is proportional to the density. The constant of proportionality is called
the two-body attachment rate-constant k.

As examples of strong attachment of slow electrons, we depict in Fig. 2.12a-
d the measured cross-sections of some freons. The rate constants of many other
halogen-containing compounds are known [MCC 81]; some of them reach several
10−8 s−1 cm3 at low (thermal) electron energies.

Among the three-body processes, the Bloch–Bradbury process is the best known
[BLO 35, HER 69]. It plays an important role in the absorption of electrons by
oxygen molecules. At energies below 1 eV, the electron is attached to the oxygen
molecule that forms the excited and unstable state O∗−

2 . Unless the energy of excita-
tion is carried away by a third body X during the lifetime of the excitation, the O∗−

2
ion will lose its electron, which is then no longer attached. The lifetime τ is of the
order of 10−10 s; experimental determinations span the range between 0.02×10−10

and 1.0×10−10 s, and theoretical calculations come out between 0.88×10−10 and
3× 10−10 s [HAT 81]. The rate R of effective attachment depends on τ , as well as
on the two collision rates and the cross-sections for the two processes,

σ1 : e− +O2 → O∗−
2 ,

σ2 : O∗−
2 +X → O∗−

2 +X.

Let us look at a swarm of electrons in a gas that contains O2 molecules with
density N(O2) and third bodies X with density N(X). Per electron, let the rate dn/dt
of formation of the O∗−

2 state be 1/T1; if the rate of spontaneous decay is n/τ and the
rate of de-excitation through collision with third bodies n/T2, then the equilibrium
number n per electron of O∗−

2 states is given by

1
T1

=
n
τ

+
n
T2

,
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Fig. 2.12a-d Cross-sections for the production of negative ions by slow electrons in (a) CCl4,
(b) CCl2F2, (c) CF3I and (d) BCl3, observed by Buchel’nikova [BUC 58]

n =
1
T1

τT2

τ +T2
.

Therefore, the rate R of effective attachment of one electron is

R =
n
T2

=
1
T1

τ
τ +T2

.

The rates 1/T1 and 1/T2 may be expressed by the cross-sections a and relative
velocities c:

1
T1

= c1σ1N(O2),

1
T2

= c2σ2N(X).

In our application, c1 is the instantaneous electron velocity and c2 the velocity of
the thermal motion between the molecules O2 and X.
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For ordinary pressure and temperature we have T2 � τ , and therefore the rate is
given by

R = τc1 c2 σ1 σ2 N(O2)N(X) = k1N(O2)N(X). (2.77)

It is proportional to the product of the two densities. The three-body attachment
coefficient k depends on the electron energy through c1 and σ1, on the temperature
through c2, and on the nature of the third body through σ2. The rate varies linearly
with each concentration and quadratically with the total gas density.

In the 1980’s another three-body process has been identified as making an impor-
tant contribution to the absorption of electrons on O2 molecules. The O2 molecules
and some other molecules X form unstable van der Waals molecules:

O2 +X ↔ (O2X).

These disintegrate if hit by an electron, which finally remains attached to the O2

molecule:
e− +(O2X) → O−

2 +X.

Since the concentration of van der Waals molecules in the gas is proportional to
the product N(O2)N(X), the dependence on pressure and concentration ratios in a
first approximation is the same as in the Bloch–Bradbury process.

The relative importance of these two three-body attachment processes has been
measured with the help of an oxygen-isotope effect [SHI 84]. The authors find

Fig. 2.13 Some three-body
attachment coefficients for
O2 quoted from Massey
et al. [MAS 69]. The two
crosses are measurements
by Huk et al. [HUK 88]; for
the hydrocarbons at thermal
energy, see [SHI 84]
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examples where the van der Waal mechanism dominates, whilst the Bloch–Bradbury
process is weak; also at higher gas pressures, the van der Waals mechanism makes
a strong contribution.

For the operation of drift chambers, the absorption of electrons is a disturbing
side effect that can be avoided by using clean gases. Therefore we leave out further
refinements that are discussed in the literature.

Some measured three-body attachment coefficients for O2 are shown in Fig. 2.13
as functions of the electron energy. It can be seen that the H2O molecule is much
more effective as the third body than the more inert atoms or the nitrogen molecule.

The three-body O2 attachment coefficient involving the methane molecule is
large enough to cause electron losses in chambers where methane is a quenching
gas. For example (compare Table 11.4), with 20% CH4 at 8.5 bar, an oxygen con-
tamination of 1 ppm will cause an absorption rate of 2000/s, or roughly 3%/m of
drift at a velocity of 6cm/μs. More information on electron attachment is collected
in Chap. 12.

2.3 Results from the Complete Microscopic Theory

In this section we quote without proof results for mobility and diffusion in the
framework of the complete microscopic theory. The reader is referred to Huxley
and Crompton [HUX 74] and to Allis [ALL 56] for a more detailed discussion.

2.3.1 Distribution Function of Velocities

The principal approximation of Sect. 2.2 was to take a single velocity c to represent
the motion between collisions of the drifting electrons. In reality, these velocities
are distributed around a mean value according to a distribution function

f0(c)dc,

which represents the isotropic probability density of finding the electron in the three-
dimensional velocity interval dcx dcy dcz at c. Therefore the distribution function is
normalized so that

4π
∞∫

0

c2 f0(c)dc = 1.

The term ‘isotropic’ actually refers to the first, isotropic, term of an expansion in
Legendre functions of the probability distribution for the vector c.

The shape of the distribution depends on the way in which the energy loss and
the cross-section vary with the collision velocity. The regime of elastic scattering
as well as a good part of the regime of inelastic scattering can be described by two
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functions: an effective cross-section σ(c), and the fractional energy loss λ(c)(σ(c)
is sometimes called the momentum transfer cross-section). Electron drift velocities
that are appropriate for drift chambers are achieved by electric fields that are high
enough to make the random energy of the electron much higher than the thermal
energy of the gas molecules. Therefore we may neglect thermal motion. Absorption
or production of electrons (ionization) is equally excluded.

With these assumptions the distribution of the random velocities can be derived in
the framework of the Maxwell–Boltzmann transport equations [HUX 74, SCH 86,
ALL 56]:

f0(c) = const exp

⎡
⎣−3

ε∫
0

λ
εdε
ε2

l

⎤
⎦= const exp

⎡
⎣ −3m

2e2E2

ε∫
0

λν2dε

⎤
⎦ , (2.78)

where ε = mc2/2, and εl = eEl0 = eE/(Nσ) is the energy gained through a mean
free path l0 in the direction of the field. The distribution function can also be written
as an integral over the collision frequency ν = cNσ . The second form of (2.78)
lends itself to the generalization owing to the presence of a magnetic field. For a
discussion of the range of validity of our assumptions, the reader is also referred to
the quoted literature.

In order to make a picture of such velocity distributions, we consider two limit-
ing cases.

• If both the collision time τ and the fractional energy loss are independent of c,
then f0(c) is the Maxwell distribution. Using (2.77) and (2.78),

f0(c) →
1

(α
√

π)3
exp

[
−
( c

α

)2
]
, (2.79)

with

α2 =
4

3λ

(
eE
m

τ
)2

.

• If both the mean free path l0 = cτ and the fractional energy loss are independent
of c – an approximation that is sometimes useful in a limited range of energies –
then f0(c) assumes the form of a Druyvesteyn distribution (Fig. 2.14):

f0(c) →
1

α3πΓ (3/4)
exp

[
−
( c

α

)4
]
, (2.80)

with

α4 =
8

3λ

(
eE
m

l0

)2

.

Once f0(c) is known, the mobility and diffusion are calculated from appropriate
averages over all velocities c.
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Fig. 2.14 Normalized
Maxwell and Dryvesteyn
distributions according to
(2.79) and (2.80). The proba-
bility density is given in units
of c/α . The r.m.s. values are
indicated

2.3.2 Drift

The drift velocity is given by

u =
4π
3

e
m

E
N

∞∫
0

f0(c)
d
dc

[
c2

σ(c)

]
dc = −4π

3
e
m

E

∞∫
0

c3

ν(c)
d
dc

f0(c)dc. (2.81)

The two expressions are related to each other by a partial integration and by the
fact that the mean collision frequency ν(c) is Nσ(c)c. The drift velocity depends on
E and N only through the ratio E/N.

Another way of writing (2.81) is to use brackets for denoting the average over
the velocity distribution. With a little algebra, we obtain

u =
e
m

(
〈τ〉+

〈
c
3

dτ
dc

〉)
E. (2.82)

This shows that expression (2.14) is recovered not only in the obvious case that
τ is independent of c, but already when only the average 〈cdτ/dc〉 vanishes.

In the case of a constant σ and λ, using the Druyvesteyn distribution (2.80), we
may derive the mean square random velocity 〈c2〉 and the square of the drift velocity
from (2.81). We find that

〈c2〉 =
eE

mNσ

√
2
λ

0.854,

u2 =
eE

mNσ

√
λ
2

0.855.
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A comparison with (2.19) and (2.20) shows that there are extra factors of 0.854
and 0.855 resulting from the finite width of the velocity distribution.

2.3.3 Inclusion of Magnetic Field

In Sect. 2.2.3 we have seen that the addition of a magnetic field to electrons drift-
ing in an electric field will change their effective random velocity c unless the two
fields are parallel, so there has to be a change in the distribution function. Following
Allis and Allen [ALL 37] (but see also [MAS 69, HUX 74]), we quote the result for
the case where the two fields are orthogonal to each other. The distribution takes
the form

f0(c) = const exp

⎡
⎣− 3m

2e2E2

ε∫
0

λ(ε)[ν2(ε)+ω2]dε

⎤
⎦ , (2.83)

where the cyclotron frequency ω = (e/m)B is, of course, independent of ε .
This function depends on two constants of nature e and m, on two functions of

the electron energy σ(ε) and λ(ε), and on three numbers (E, B, N) in the hands of
the experimenter, of which two (say E/N and B/N) are independent. For arbitrary
orientation of the fields, f0 would depend on the angle between the two fields.

In the presence of a magnetic field, the drift-velocity vector depends on both
the electric and magnetic fields. The corresponding mobility tensor is μik, so that
ui = μikEk (summation over common indices is understood). The three diagonal
components and the six off-diagonal terms are given by the following expressions:

μii = −4π
3

e
m

∞∫
0

c3(ν2 +ω2
i )

ν(ν2 +ω2)
d
dc

f0(c)dc,

μik = −4π
3

e
m

∞∫
0

c3(ωiωk +νεik jω j)
ν(ν2 +ω2)

d
dc

f0(c)dc.

(2.84)

where the fully antisymmetric symbol εik j represents a sign-factor that is equal to
+1 for all even permutations of 123, to −1 for all odd ones, and to zero if any two
elements are equal; ω1,ω2,ω3, are the components of the magnetic field, multiplied
by e/m, ω2 = ω2

1 +ω2
2 +ω2

3 ; f0(c) is the velocity distribution function appropriate
for the two fields. As in the case of the scalar mobility, if ν is independent of c then
one recovers the expression (2.5) derived from the equation of motion with friction.
Deviations from this relation can therefore be expected to the extent that ν varies
with c. See also the discussion in Sect. 2.4.5.

We notice that the number density N of gas molecules is a scaling factor, not only
for the electric field but also for the magnetic field. If in (2.84) we divide numerator
and denominator by ω2 = (e/m)2B2, then all terms containing ω’s appear either as
ωi/ω or as ν/ω = Nσc/ω .
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The dependence of the drift-velocity vector on the three scalar quantities E, B,
and N may therefore be written in the form

ui = μik

(
E
N

,
B
N

,φ
)

Ek

N
, (2.85)

where φ is the angle between the fields.
This relation is important when it comes to a discussion of the gas pressure in

drift chambers (Chap. 12).

2.3.4 Diffusion

As given in the quoted literature, the isotropic diffusion coefficient is derived from
the velocity distribution function through the integral

D = 4π
∞∫

0

c2

3ν(c)
f0(c)c2 dc. (2.86)

We note that expression (2.61) represented the case of one unique velocity,

4πc2 f0(c) = δ (c−〈c〉).

The magnetic anisotropy caused by a B field may be described by the 3×3 tensor
Dik. Its elements are given by

Dii =
4π
3

∞∫
0

c2(ν2 +ω2
i )

ν(ν2 +ω2)
f0(c)c2 dc,

Dik =
4π
3

∞∫
0

c2(ωiωk +νεik jω j)
ν(ν2 +ω2)

f0(c)c2 dc.

(2.87)

For the electric anisotropy of diffusion, we must retain in the velocity distribution
its dependence on position; the reader is referred to the literature [PAR 69].

2.4 Applications

In this section we discuss few practical applications of the formulae derived in the
previous sections.

2.4.1 Determination of σ(ε) and λ(ε) from Drift Measurement

In the drift of ions and electrons in gases, the quantities that are important for track
localization are the drift velocity and the diffusion tensor. In this chapter we have
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described how they are derived as functions of E and B from the two functions of
the collision velocity, σ(c) and λ(c), the effective scattering cross-section, and the
fraction of energy loss per collision. However, these two functions are generally
not known from independent measurements, and one goes in the opposite direction:
starting from measurements of u(E) and D(E)/μ(E), one tries to find, with some
intuition, σ(c) and λ(c), in such a way that they reproduce the measurements using
the formulae described in Sect. 2.3. If the measured values coincide with the ones
“recalculated” from the guessed σ(c) and λ(c), then this consistency indicates that
σ(c) and λ(c) were guessed correctly. The first example using this procedure was
applied to electrons in argon by Frost and Phelps in 1964 [FRO 64].

In the work of B. Schmidt [SCH 86], considerable progress is visible not only in
the accuracy of his measurements – which is near 1% in the drift velocity and 5%
in D/μ – but also in the inclusion of the electric anisotropy of diffusion. He studied
the noble gases and some molecular gases–chiefly methane–which are useful in drift
chambers. In Fig. 2.15 we see the CH4 drift-velocity measurements, and in Fig. 2.16
the measurements of the transverse and longitudinal diffusion. Superimposed we
find curves that represent the recalculated values. The effective (momentum trans-
fer) cross-section of methane and the energy loss factor of methane used in their
calculation have already been shown in Figs. 2.2a and 2.2b as functions of the
electron energy. The consistency of these results leaves no doubt that the method
is correct, although the assessment of the errors to σ(ε) and λ(ε) remains diffi-
cult. It is possible to give λ(ε) a form that is consistent with plausible assumptions
about the quadrupole moments of the methane molecule. Similar computations were
done by Biagi [BIA 89]. A special case concerning water contamination is treated
in Sect. 12.3.3.

Fig. 2.15 Measured and recalculated electron drift velocity in CH4 as a function of the reduced
electric field. One Townsend (Td) equals 10−17 V cm2.[SCH 86]
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Fig. 2.16 Measured and recalculated transverse and longitudinal electron diffusion in CH4
[SCH 86]. The ratio of the diffusion coefficients over the mobility is shown as a function of the
reduced electric field

There are microwave relaxation measurements that allow an alternative deriva-
tion of the cross-sections of some gases; also, there are quantum-mechanical cal-
culations for the noble gases. Where a comparison of cross-sections can be made,
they are identical within factors of 2 to 5, and often much better. According to the
calculations, the minimum is sharper than that derived from the drift measurement
because the wide energy distribution smears it out. For more details, the reader is
referred to the literature.

There is a very large number of measurements of electron drift velocities and
diffusion coefficients. Many of them are collected in two compilations [FEH 83]
and [PEI 84], which also contain other material that is of interest with respect to
drift chambers.

Measurements in magnetic fields are rare; we present some examples in
Sect. 2.4.7. Precision reproductions of magnetic data, and determinations of σ(ε)
and λ(ε) from them, have not yet been done.

2.4.2 Example: Argon–Methane Mixture

In this subsection we want to collect and interpret some drift and diffusion measure-
ments for argon + methane mixtures without magnetic field. This gas has been
investigated more systematically than most others, and is being used in several
large TPCs.

The measurements, done by Jean-Marie et al. [JEA 77], of the drift velocity as
a function of the electric field E at atmospheric pressure are presented in Fig. 2.17.
For all mixing ratios R there is a rising part at low E and a falling part at high E. The
maxima occur at values Ep, which depend almost linearly on the CH4 concentration,
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Fig. 2.17 Drift velocity u in
an argon–methane mixture
as a function of the electric
field E, measured by Jean-
Marie et al. [JEA 77]. The
lowest curve is for 90%
Ar+10% CH4 etc.

up to Ep = 900V/cm for pure CH4. For every concentration, the maximum occurs
at the electric-field value where the average electron energy is at the Ramsauer min-
imum of the momentum transfer cross-section (e = 0.3eV for CH4 and 0.25 eV for
Ar). According to (2.19), the peak behaviour of u2 is determined mostly by the σ(ε)
in the denominator because the factor

√
λ(ε) varies much less.

We can actually measure the values of ε for every E and R, and check that the
Ramsauer minimum coincides with the velocity peak. For this we make use of the
systematic measurements of the width σx of the single-electron diffusion conducted
by the Berkeley group [PEP 76]. Their results have been rescaled to 1 cm drift length
at 760 Torr, and are plotted in Fig. 2.18. They exhibit a fairly constant behaviour of
the diffusion when E is changed, and an increase for smaller CH4 concentrations.

Referring to our equation (2.63), we may calculate the electron energy for every
E and every mixing ratio R:

ε(E,R) =
3
4

σ2
x (E,R)
1cm

eE, (2.88)

This has been graphed in Fig. 2.19, where we have also marked on the horizontal
scale the velocity peaks for the various values of R. We observe that the measured
electron energies are in the Ramsauer minimum at the velocity peaks (see Fig. 2.2a).
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Fig. 2.18 Width of the diffu-
sion cloud after a drift of 1 cm
for various mixtures of CH4
and Ar at 760 Torr. The upper
group of points refer to 10%
CH4 +90% Ar, etc. Measure-
ments by the Berkeley TPC
group [PEP 76] were done at
600 Torr over a drift length
of 15 cm

Fig. 2.19 Electron energy
defined in (2.63) as a function
of the electric field for
various mixtures of CH4 +Ar
at 760 Torr. The data of
Fig. 2.18 were used. The
arrows on the horizontal scale
indicate the position of the
maxima of the drift velocities
according to Fig. 2.17
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2.4.3 Experimental Check of the Universal Drift Velocity
for Large ωτ

In a drift experiment with crossed electric and magnetic fields, Merck [MER 89]
measured drift angles and drift velocities at atmospheric pressure in Ar + CH4

mixtures that are known to have large values of τ under typical drift-chamber con-
ditions. Using the tangent of the drift angle as measure for ωτ (2.11), he found the
drift velocities that are plotted as a function of ωτ in Fig. 2.20a,b. We observe that
they do approach the limit

u → E
B

quickly from below. However, the approximation (2.54) is not very good, as dif-
ferent combinations of E and B that lead to the same ωτ do not yield the same

Fig. 2.20a,b Measured drift
velocity in units of E/B as
a function of the tangent
of the observed drift angle,
for various magnetic fields.
(a) Ar (50%)+ CH4 (50%),
(b) Ar (95%) + CH4 (5%)
[MER 89]
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u, especially at low concentrations of CH4. We would expect that the more detailed
theory involving the electron energy distribution is required in order to explain these
variations.

2.4.4 A Measurement of Track Displacement as a Function
of Magnetic Field

In a TPC with almost perfect parallelism between B and E, the small angle a of
misalignment causes a displacement of every track element that is proportional to
the drift length L. If we imagine the coordinate system aligned with the E field along
z and with small extra B components along x and y, there will be displacements at
the wire plane, equal to δx = Lux/uz and δy = Luy/uz; according to (2.6), these are

δx = L

(
αx

ω2τ2

1+ω2τ2 −αy
ωτ

1+ω2τ2

)
,

δy = L

(
αx

ωτ
1+ω2τ2 +αy

ω2τ2

1+ω2τ2

)
,

(2.89)

with αx = Bx/Bz and αy = By/Bz. It is by reversing the magnetic field that the
different contributions can be separated. The symmetric part of δx is

Δ S
x =

1
2
[δx(B)+δx(−B)] = Lαx

ω2τ2

1+ω2τ2 , (2.90)

and its antisymmetric part is

Δ A
x =

1
2
[δx(B)−δx(−B)] = Lαy

−ωτ
1+ω2τ2 . (2.91)

In Fig. 2.21 we see measured displacements [AME 85] for two different values
of L and a range of values of B. Fitting the symmetric part in Fig. 2.21 with the func-
tional form of (2.90) yielded τ = 0.29× 10−10 s, and the antisymmetric part fitted
with (2.91) yielded τ = 0.35× 10−10 s, for the particular conditions of the experi-
ment (argon (91%) + methane (9%), 1 bar, E = 110V/cm, u = 5.05cm/μs). These
values of τ are not the same because they represent averages over the distribution
functions, which are written explicitly in (2.84).

2.4.5 A Measurement of the Magnetic Anisotropy of Diffusion

In a TPC with parallel E and B fields, the transverse width σdiff of the electron
cloud originating from a laser track was measured for various drift distances L and
magnetic fields B [AME 86]. Since this width is related to the diffusion constant D
and the known drift velocity u by
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Fig. 2.21 Measured track displacements due to a small angle between the electric and magnetic
fields; (a) symmetric part, (b) antisymmetric part. The curves are fits to (2.90) and (2.91). Curves
A: L = 126cm; curves B: L = 65cm [AME 85]

σ2
diff(L,B) = 2D(B)L/u,

we determined D(B). The quantity actually observed, σ2
1 , was the quadratic sum of

σdiff and of a constant, σ0, given by the width of the laser beam and the electrode
configuration. Figure 2.22 depicts the observations.

If we express the factor D(0)/D(B) by which the magnetic field reduces the
diffusion constant as a function of B2, we see a linear behaviour for small B2 as well

Fig. 2.22 Measured dependence of σ2
1 on the magnetic field and the drift length. The slope

decreases with increasing B as the diffusion is reduced [AME 86]
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Fig. 2.23 The factor by which
the magnetic field reduces the
transverse diffusion in the
example elaborated in the
text. It is a linear function of
B2 for both small and large B
[AME 86]

as for large B2. The transition region between the two straight lines is around 6kG2

(see Fig. 2.23). The interpretation is the following.
Referring to (2.84) and (2.87) we note that the off-diagonal elements of the dif-

fusion tensor do not contribute to σdiff. We write

D11(ω) =
4π
3

∞∫
0

c2ν
ν2 +ω2 f0(c)c2dc =

〈
c2ν

3(ν2 +ω2)

〉
.

This expression can be evaluated in the two limiting cases of ω2 small and ω2

large compared with ν2
0 , the square of a typical collision frequency ν0. For this

typical frequency we may take the value derived from the electron mobility μ in the
limit in which ν is independent of c : ν0 = (e/m)/μ . We find in lowest order

D11(0)
D11(B)

= 1+ω2τ2
1 , ω2 	 ν2

0 ,

D11(0)
D11(B)

= C +ω2τ2
2 , ω2 	 ν2

0 .

(2.92)

The values of

τ2
1 =

〈c2/ν3〉
〈c2/ν〉 ,

τ2
2 =

〈c2/ν〉
〈c2/ν〉 ,

C =
〈c2/ν〉〈c2ν3〉

〈c2ν〉2 (2.93)

are independent of ω , because the two fields are parallel to each other.
Since ν is a function of c and is therefore distributed over a wide range of

values, the averages in (2.93) are all different. In fact the straight lines in Fig. 2.23



92 2 The Drift of Electrons and Ions in Gases

are described by τ1 = (0.4± 0.02)× 10−10 s, τ2 = (0.266± 0.006)× 10−10 s, and
C = 2.8± 0.2 for the particular conditions investigated, which were argon (91%)
+ methane (9%) at 1 bar, E = 110V/cm, and u = 5.05cm/μs, implying ν0 =
4.2×1010 s−1.

The two straight lines cross each other at ω = (3.6±0.3)×1010 s−1, where ω/ν0

is nearly 1. If ν were independent of c, or if the distribution of c were extremely
narrow, we would have had τ1 = τ2 and C = 1.

2.4.6 Calculated and Measured Electron Drift Velocities
in Crossed Electric and Magnetic Fields

Drift chambers that have to operate in a magnetic field B often have their pro-
portional wires parallel to B, hence their electrons drifting in crossed electric and
magnetic fields.

Daum et al. [DAU 78] have measured the drift-velocity vector for a variety of
suitable gas mixtures as functions of both fields. Typical velocities |u| are shown in
Fig. 2.24, and typical drift angles ψ , measured against the direction of E towards
E ×B, are shown in Fig. 2.25. We have selected two examples of gas mixtures,

Fig. 2.24 Magnitude of the
drift velocity in crossed elec-
tric and magnetic fields for
two different gas mixtures,
plotted as a function of the
electric field (at atmospheric
pressure) for four differ-
ent values of B. The curves
represent calculations by Ra-
manantsizhena [RAM 79],
the points measurements by
Daum et al. [DAU 78]
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Fig. 2.25 Drift angle in
crossed electric and magnetic
fields for the same conditions
as in Fig. 2.24

Fig. 2.26 The magnitude of the drift velocity in two different mixtures of argon–methane,
measured at various magnetic fields by Merck [MER 89], and plotted as a function of the electric
field component along the drift direction. The measured points fall essentially on universal curves
that are independent of the magnetic field
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argon + ethane, and xenon + ethane, which exhibit different mobilities and,
therefore, different values of ωτ at a given magnetic field.

These measurements have been compared with calculations based on the for-
malism explained in Sect. 2.3, by Ramanantsizhena [RAM 79]. He used elastic
cross-sections for the e−C2H6 collision, which are based on the work of Duncan and
Walker [DUN 74], and inelastic cross-sections derived from Palladino and Sadoulet
[PAL 75]. Comparing the measurements with the calculations, we notice that agree-
ment exists, mostly at the level of 5 to 10%, occasionally worse. In addition we
observe the small variation of the calculated maximum of the drift velocity as the
magnetic field is changed: according to Tonks’ theorem it should stay the same, but
with a realistic distribution function it decreases by 1 or 2% for the gas mixtures of
Fig. 2.24 as B goes up from 0 to 1.5 T.

In Fig. 2.26 we see drift velocities measured by Merck [MER 89] in crossed
electric and magnetic fields as functions of the electric field component along the
drift direction. We note that the points belonging to different B fall on the same
line characteristic of the gas, within the measurement error, which is 2 or 3% (only
for the small CH4 concentration is there a 12% deviation near the peak). Obviously
Tonks’ theorem, (2.13) and (2.51), is quite well confirmed.
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Chapter 3
Electrostatics of Tubes, Wire Grids
and Field Cages

The electric field in a drift chamber must provide two functions: drift and amplifi-
cation. Whereas in the immediate vicinity of the thin proportional or ‘sense’ wire
the cylindrical electric field provides directly the large field strengths required for
charge amplification, the drift field must be created by a suitable arrangement of
electrodes that are set at potentials supplied by external voltage sources. It is true
that drift fields have also been created by depositing electric charges on insulators –
such chambers are described in Sect. 11.4 – but we do not treat them here. Charge
amplification is not necessarily confined to proportional wires. It has also been mea-
sured between parallel plates and between a wire mesh and a metal plate as well as
in the tiny holes in a plate coated on both sides with the metal layers of a condenser.
In fact these MICROMEGA and GEM counters seem to have a promising future
[FAB 04].

There is a large variety of drift chambers, and they have all different electrode
arrangements. An overview of existing chambers is given in Chap. 11, where we
distinguish three basic types. In the volume-sensitive chambers (types 2 and 3) the
functions of drift and amplification are often more or less well separated, either by
special wire grids that separate the drift space from the sense wire or at least by
the introduction of ‘field’ or ‘potential’ wires between the sense wires. The drift
field, which fills a space large compared to the amplification space, then has to be
defined at its boundaries; these make up the ‘field cage’. For a uniform field, the
electrodes at the boundaries are at graded potentials in the field direction and at
constant potentials orthogonal to it.

Also the area-sensitive chambers (type 1) have often been built with ‘potential’
or ‘field-shaping’ wires to provide a better definition and a separate adjustment of
the drift field. In this chapter we want to discuss some elements that are typical for
the volume-sensitive chambers with separated drift and amplification spaces: one or
several grids with regularly spaced wires in conjunction with a field cage. Although
directly applicable to a time projection chamber (TPC), the following considerations
will also apply to many type 2 chambers.

Electrostatic problems of the most general electrode configuration are usually
solved by numerical methods, for example using relaxation techniques [WEN 58].

W. Blum et al., Particle Detection with Drift Chambers, 97
doi: 10.1007/978-3-540-76684-1 3, c© Springer-Verlag Berlin Heidelberg 2008
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Computer codes exist for wire chamber applications [VEN 08]. In this chapter we
develop analytical methods taking advantage of simple geometry, in order to es-
tablish the main concepts. A classic treatment is found in Morse and Feshbach
[MOR 53].

The simplest device for the measurement of drift time is the drift or proportional
tube. This name refers to the original, proportional mode of amplification, but the
device can also be used beyond the proportional mode, see Sect. 4.2. In its ideal form
it is a circular cylindrical tube with a wire in the centre. As we have in mind to also
describe deviations from the ideal form which arise in practice we will approach the
electrostatics of a tube in a slightly generalized way.

3.1 Perfect and Imperfect Drift Tubes

Deviations from the ideal geometry of two concentric circular cylinders are caused
by displaced wires or deformed walls. In this section we discuss the electric field
arising in a circular right cylinder with the wire off-centre. Since we are dealing
with relatively small deviations our method is a first-order perturbation calculation
of the linear deviation.

The solution of Laplace’s equation

∇2Φ = 0 (3.1)

for the potential Φ in the charge-free space between two conductors is found by
separation of variables. In cylindrical coordinates we write

Φ(r,ϕ,z) = R(r)φ(ϕ)Z(z)

1
rR

∂
∂ r

(
r

∂R
∂ r

)
+

1
r2φ

∂ 2φ
∂ϕ2 +

1
Z

∂ 2Z
∂ z2 = 0. (3.2)

Assuming Z(z) = const = 1, we equate the second term to the constant −ν2 so that

d2φ
dϕ2 = −ν2φ ,

whose solutions are

φ(ϕ) = C′
ϕ cosνϕ +C′′

ϕ sinνϕ if ν �= 0

φ(ϕ) = C′
ϕ ϕ +C′′

ϕ if ν = 0. (3.3)

The C’s are constants to be determined by the boundary conditions. The radial part
becomes the Euler-Cauchy equation

r
d
dr

(
r

dR
dr

)
−ν2R = 0. (3.4)
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If ν = 0, the solution is given by

R(r) = C′
r lnr +C′′

r . (3.5)

3.1.1 Perfect Drift Tube

The potential between two coaxial cylinders is a straight application of Eq. (3.5).
When the outer cylinder (radius b) is on ground, and the wire (radius a) on positive
potential U , one determines the coefficients to be given by C′

ϕ = 0, C′′
r = −C′

r lnb
and C′

rC
′′
ϕ ln(a/b) = U , so that

Φ =
U

ln(a/b)
ln(

r
b
). (3.6)

The electric field is directed radially outwards, and

Er = −∂Φ
∂ r

=
U

ln(b/a)
1
r
. (3.7)

Another way to calculate Er is using Gauss’ theorem according to which

Er =
λ

2πε0

1
r

(3.8)

where λ is the linear charge density on the wire; the value of ε0 is 8.854 · 10−12

As/Vm. Therefore the capacitance per unit length of tube is given by

C =
λ
U

=
2πε0

ln(b/a)
.

3.1.2 Displaced Wire

Solution of the Electrostatic Problem

Let the wire be displaced from the tube centre by the distance d in the negative y-
direction (Fig. 3.1). The wire defines the centre of the coordinate system so that the
first boundary condition is

Φ(a) = U, independent of ϕ . (3.9)

We must express the second boundary by the radius vector as a function of ϕ . The
exact expression is

ρ = d sinϕ +b
√

(1− (d2/b2)(1− sin2 ϕ),
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Fig. 3.1 Geometry of
displaced wire

but we are only interested in small wire displacements. To first order in d/b we have
the boundary at

ρ = b+d sinϕ, (3.10)

and the second boundary condition is

Φ(ρ) = 0. (3.11)

Now we must determine the various coefficients using (3.9) and (3.11). To the first
order in d/b we have solutions for ν = 0 and ν = 1, and the most general solution is

Φ = (C0′
r lnr +C0′′

r )C0′′
ϕ +(C1′

r r +C1′′
r /r)(C1′

ϕ cosϕ +C1′′
ϕ sinϕ). (3.12)

Inserting (3.9), we have to require

C1′
r a+C1′′

r /a = 0, (3.13)

which implies that C1′′
r can be neglected against C1′

r for the entire space except in
the immediate vicinity of the wire surface.

When inserting (3.11) and (3.10) into (3.12) we make use of the relation

ln(b+d sinϕ) = lnb+(d/b)sinϕ,

which holds to first order in d/b. This determines the constants C0′
r , C0′′

r and C0′′
ϕ as

in the case (3.6) of the perfect tube. Comparing factors that multiply the sinϕ-terms,
we find

C0′′
ϕ C0′

r (d/b)+C1′
r bC1′′

ϕ = 0

or

C1′
r C1′′

ϕ = − d
b2

U
ln(a/b)

(3.14)

whereas C1′
ϕ = 0. This produces the solution, in first order of (d/b), equal to

Φ(r,ϕ) =
U

ln(a/b)
ln

r
b
− U

ln(a/b)
d
b

r
b

sinϕ. (3.15)
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The perturbing potential Φ1 caused by the wire displacement is given by the
second term. Using y = r sinϕ , the field perturbation is calculated to be

(E1)y = −∂Φ1

∂y
= − U

ln(b/a)
d
b2 (3.16)

(E1)x = (E1)z = 0. (3.17)

It describes a constant field directed towards negative y, whose magnitude is d/b
times the value of the unperturbed field (3.7) at the wall.

For the purpose of calculating the electrostatic force on the wire (see further
down) we also record the value of (E1)y on the wire surface (r = a). Starting
from (3.13) without the previous simplification C1′′

r = 0, the correct perturbation
potential is

Φ1(r,ϕ) =
−U

ln(a/b)
d
b2 (r− a2

r
)sinϕ. (3.18)

The field in y-direction equals

(E1(a))y = −∂Φ1

∂y
evaluated at r = a

= − U
ln(b/a)

2d
b2 sin2 ϕ

Averaging over ϕ we have an extra field on the wire surface equal to

(E1(a))y = − U
ln(b/a)

d
b2 (3.19)

The average extra field on the wire surface is as large as the field perturbation (3.16),
(3.17) throughout the volume.

Gravitational Sag

The main reason for wire displacement is the weight of the wire. Even when strung
with a pulling force T close to the breaking limit, wires in several metre long tubes
will experience a gravitational sag that is large in comparison with the achievable
accuracy of drift tubes.

In order to derive a formula for the amount of bowing we introduce the coordi-
nates y (downwards) and x (horizontal). We note that on every length element dx the
weight of the wire is

ρgσ dx (3.20)

(ρ = density, σ = cross sectional area of the wire, g = 981cm/s2). It must be com-
pensated by the vertical component of the tension at this point, which is equal to the
difference of the slopes at the two ends of the interval dx, multiplied by the pulling
force T :

−T [y′(x+dx)− y′(x)] (3.21)
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where the primes denote the first derivative. In this approximation we have assumed
that the pulling force is the same for all x, the variation due to the weight of the wire
being negligible for practical tubes.

Combining (3.20) and (3.21), one has the differential equation

−y′′ = C = ρgσ/T (3.22)

with the solution
y = (C/2)x2 +C1x+C2. (3.23)

Specifying that y = 0 at x = ±L/2 determines the coefficients C1, C2, and the solu-
tion becomes

y =
C
2

(
L2

4
− x2

)
. (3.24)

The point of the maximum excursion is the sagitta, equal to

s = y(0) =
CL2

8
=

ρgσL2

8T
. (3.25)

It is proportional to the inverse of the mechanical tension. If the tension is in-
creased the sagitta is reduced, but the tension cannot be arbitrarily increased since
non-elastic deformations take place. The maximum pulling force Tc that can be
applied to a wire is proportional to its cross section, and the ratio Tc/σ is con-
stant (except for very thin wires). The minimum achievable sagitta of a wire of
given length is independent of the wire cross section. The values of the critical ten-
sion and typical sagittas for 100-cm-long wires of different materials are shown in
Table 3.1. Usually the wires are strung to a tension close to the critical one in or-
der to reduce the sagging. Inspecting Table 3.1 we notice that among the various
materials, tungsten is the one that allows the smallest sagittas but at the expense
of quite a large tension, for a given diameter of the wire. Since the tension of the
wires is held by the endplates of the chamber, a large tension requires stiff end-
plates. In the design of a chamber one usually compromises between these two
parameters.

If the sagitta of long wires cannot be constructed to be small one may be obliged
to control its size within small tolerances. A practical way of doing this is by mea-
suring the oscillation frequency of the wire. The frequency f1 of the lowest mode of
the elastic string is

Table 3.1 Maximum stresses before deformation of typical wire materials and corresponding
sagittas for 1-m-long wires

Material Tc/σ (kg/mm2) Sagitta (μm) of a 100 cm long wire
strung at Tc

Al 4 . . .16 21 . . .84
Cu 21 . . .37 30 . . .53
Fe 18 . . .25 39 . . .54
W 180 . . .410 6 . . .13
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f1 =
1

2L

√
T

ρσ
. (3.26)

Inserting (3.25) into (3.26) produces the simple relation

f 2
1 =

g
32s

. (3.27)

Electrostatic Force on the Sagged Wire

The displacement of the wire creates an average field (3.19) which acts on the
electric charge of the wire and produces a force which tends to increase the dis-
placement. The differential equation (3.22) needs to be complemented by a term
which represents the electrostatic force per unit wire length. This is given by the
product

λ · (E1(a))y

where λ is given by (3.8) in terms of the unperturbed field, and (E1(a))y is given by
(3.19) and is proportional to the displacement y. The electrostatic force, like grav-
ity, points downwards and leads to a positive term on the right-hand side of (3.22),
whereas y′′ < 0. Therefore, the differential equation is

y′′ + k2y+C = 0 (3.28)

with C = ρgσ/T and k2 = 2πε0E2
0 (b)/T . The value of k is plotted against E0(b)

and T in Fig. 3.2.
The general solution of (3.28) is

y = C1 cos kx+C2 sin kx−C/k2. (3.29)

When specifying y(±L/2) = 0, the coefficients C1, C2 are determined, and the so-
lution becomes

y =
C
k2

(
1

cos(kL/2)
cos kx−1

)
. (3.30)

The electrostatic force has changed the form of the wire from the parabola (3.24) to
the cosine function (3.30).

The new sagitta is

sk = y(0) =
C
k2

(
1

cos(kL/2)
−1

)
kL	1−→ CL2

8
(3.31)

This means the electrostatic force has increased the sagitta (3.25) by the factor

sk

s
=

8
k2L2

(
1

cos(kL/2)
−1

)
=

2
q2

(
1

cos q
−1

)
. (3.32)
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Fig. 3.2 Value of the constant k in (3.28) relevant for the electrostatic amplification of the
gravitational sag, as a function of the electric field E0(b) at the tube wall, for various wire pulling
forces T

As the product kL approaches the value π , the excursion tends to infinity, and
the wire is no longer in a stable position. For example, the gravitational sag of a
wire strung with one N inside a 5 m long tube will be amplified by a factor of
sk/s of 1.56 if the field at the wall is E0(b) = 500V/cm. The point of instability
is reached at E0(b) = 840V/cm. In Fig. 3.3 we plot sk/s as a function of q2 or
k2L2/4.

Fig. 3.3 Amplification factor
of the gravitational sag
owing to electrostatic forces,
according to (3.32)
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3.2 Wire Grids

3.2.1 The Electric Field of an Ideal Grid of Wires Parallel
to a Conducting Plane

We assume a reference system with the x− y plane coincident with the conducting
plane (pad plane) and the y axis along the direction of the wires of the grid. The z
axis is perpendicular to the plane (see Fig. 3.4).

The potential is a function of the coordinates x and z only, because the problem
has a translational symmetry along the y direction. We assume the zero of the po-
tential on the conducting plane (z = 0). The complex potential of a single line of
charge λ per unit length placed at U ′ = x′ + iz′ is

φ(U) = − λ
2πε0

ln
(U −U ′)
(U −Ū ′)

, (3.33)

where U = x+ iz is the coordinate of a general point and Ū ′ = x′ − iz′ is the complex
conjugate of U ′. MKS units are used throughout.

The potential of the whole grid is obtained by adding up the contributions of
each wire:

φ(U) = − λ
2πε0

k=+∞

∑
k=−∞

ln
(U −U ′

k)
(U −Ū ′

k)
,

where U ′
k is the coordinate of the kth wire.

All the wires of the grid are equispaced with a pitch s: therefore

U ′
k = x0 + ks+ iz0(k = . . .−2,−1,0,1,2, . . .),

where x0 and z0 are the coordinates of the 0th wire of the grid. The potential of the
grid can be written as

φ(U) = − λ
2πε0

k=+∞

∑
k=−∞

ln
(U −U ′

0 − ks)
(U −Ū ′

0 − ks)
.

This summation can be computed [ABR 65]:

Fig. 3.4 An ideal grid of
wires parallel to a conducting
plane
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φ(U) = − λ
2πε0

ln
sin[(π/s)(U −U ′

0)]
sin[(π/s)(U −Ū ′

0)]

and the corresponding real potential is

V (x,z) = Re φ(U)

= − λ
4πε0

ln
sin2[(π/s)(x− x0)]+ sin h2[(π/s)(z− z0)]
sin2[(π/s)(x− x0)]+ sin h2[(π/s)(z+ z0)]

. (3.34)

Figure 3.5a shows V (x, z) as function of z at two different values of x. In the chosen
example the grid was placed at z0 = s. We notice that such a grid behaves almost
everywhere like a simple layer of charge with surface density λ/s. Only in the imme-
diate vicinity of the wires (distances much smaller than the pitch) can the structure
of the grid be seen (compare with Fig. 3.5b, which shows the potential of a simple
layer of charge). Therefore it is possible to superimpose different grids or plane elec-
trodes at distances larger than the pitch without changing the boundary conditions
of the electrostatic problem. We have an example of the general two-dimensional
problem where a potential φ that varies periodically in one direction x has every
Fourier component ≈ cos(2πnx/s) damped along the transverse direction z accord-
ing to the factor e−2πnz/s. This holds because every Fourier component must satisfy
Laplace’s equation

∂ 2φ
∂x2 +

∂ 2φ
∂ z2 = 0

Fig. 3.5 (a) The potential V (x,z) of a grid of wires situated a distance z0 from a conducting plane
at x0, x0 + s, . . . with pitch s = z0 and a linear charge density λ per wire. (b) The potential V (z) of
a plane of charge situated a distance z0 from a conducting plane, with a surface charge density σ
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outside the wires. The solution is

φ = ∑
n

Cne−2πnz/s cos(2πnx/s),

the Cn being constants.
At a distance from the grid comparable or larger than the pitch the potential

assumes the value

V (x,z) =
zλ
ε0s

for z < z0,z0 − z � s
2π

,

V (x,z) =
z0λ
ε0s

for z0 < z,z− z0 �
s

2π
.

(3.35)

On the surface of the wires the potential assumes the value evaluated at (x− x0)2

+(z− z0)2 = r2. We replace in first order of r/s the hyperbolic functions by their
arguments and take for sinh(2πz0/s) the positive exponential. The potential of the
wire is then

V (wire) =
λz0

ε0s

(
1− s

2πz0
ln

2πr
s

)
. (3.36)

This means that the wire grid, although it behaves like a simple sheet with area
charge density λ/s has some ‘transparency’. We could have given the grid a zero
potential and the conducting plane a potential V . Then, beyond the grid the potential
would have been

λ
2πε0

ln
2πr

s

and not zero as on the grid – some of the potential of the plane behind can be ‘seen
through the grid’. In other words, the potential beyond the grid is different from the
potential on the grid by the difference between the electric field on the two sides of
the grid, multiplied by the length (s/2π) ln(2πr/s).

The electric field that can be computed from (3.34) is given here for convenience:

Ex(x,z) =
λ

2sε0
sin

[
2π
s

(x− x0)
][

1
A1

− 1
A2

]
,

Ez(x,z) =
λ

2sε0

{
sinh[(2π/s)(z− z0)]

A1
− sinh[(2π/s)(z+ z0)]

A2

}
,

where

A1 = cosh

[
2π
s

(z− z0)
]
− cos

[
2π
s

(x− x0)
]
,

A2 = cosh

[
2π
s

(z+ z0)
]
− cos

[
2π
s

(x− x0)
]
.
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3.2.2 Superposition of the Electric Fields of Several Grids
and of a High-Voltage Plane

Knowing the potential created by one plane grid (3.34) and its very simple form
(3.35) valid at a distance d(d � s/2π) out of this plane, we want to be able to
superimpose several such grids, in order to accommodate not only the sense wires
but also all the other electrodes: the near-by field and shielding wires and the distant
high-voltage electrode.

In order to be as explicit as possible we will present the specific case of a TPC.
These chambers have more grids than most other volume-sensitive drift chambers,
and the simpler cases may be derived by removing individual grids from the follow-
ing computations.

We want to calculate the electric field in a TPC with the geometry sketched in
Fig. 3.6. The pad plane is grounded, and we have four independent potentials: the
high-voltage plane (Vp), the zero-grid wire (Vz), the field wires (Vf) and the sense
wires (Vs). We have to find the relations between those potentials and the charge
induced on the different electrodes.

Since the distance d between the grid planes satisfies the condition d � s/2π ,
the total electric field is generally obtained by superimposing the solution of each
grid. This assumes that all the wires inside a single grid are at the same potential,
but it is not the case for the sense-wire and field-wire grids where the sense wires
and the field wires are at different potentials and the two grids are at the same z. In
this case the superposition is still possible owing to the symmetry of the geometry:
the potential induced by the sense-wire grid on the field wires is the same for all the
field wires and vice-versa.

The potential induced by the sense-wire grid on the field wires can easily be
computed because the field-wire grid and the sense-wire grid have the same pitch.
Evaluating formula (3.34) at the position of any field wire we find that

V
(

x0 +
s1

2
+ ks1,z1

)
=

λs

2πε0
ln

[
cosh

2πz1

s1

]
≈ λsz1

ε0s1
− λs

2πε0
ln2. (3.37)

Fig. 3.6 Basic grid
geometry of a TPC: The
sense-wire/field-wire plane
is sandwiched between
two grounded planes – the
zero-grid-wire plane and the
pad plane. The high-voltage
plane is a large distance away
from them
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We can now use (3.35), (3.36) and (3.37) to calculate the potential of each elec-
trode as the sum of the contributions of the charges induced on each grid and on the
high-voltage plane:

Vs =
λsz1

ε0s1

(
1− s1

2πz1
ln

2πrs

s1

)
+

λfz1

ε0s1

(
1− s1

2πz1
ln2

)
+

λzz1

s2ε0
+

σpz1

ε0
,

Vf =
λsz1

ε0s1

(
1− s1

2πz1
ln2

)
+

λfz1

ε0s1

(
1− s1

2πz1
ln

2πrf

s1

)
+

λzz1

s2ε0
+

σpz1

ε0
,

(3.38)

Vz =
λsz1

s1ε1
+

λfz1

s1ε0
+

λzz2

ε0s2

(
1− s2

2πz2
ln

2πrz

s2

)
+

σpz2

ε0
,

Vp =
λsz1

s1ε0
+

λfz1

s1ε0
+

λzz2

s2ε0
+

σpzp

ε0
,

where σp is the surface charge density on the high-voltage plane, λs,λf,λz are the
charges per unit length on the wires, and rs,rf,rz are the radii of the wires.

We can define a surface charge density σ , for each grid, as the charge per unit
length, divided by the pitch (λi/si), and (3.38) can be written as

⎛
⎜⎜⎝

Vs

Vf

Vz

Vp

⎞
⎟⎟⎠= A

⎛
⎜⎜⎝

σs

σf

σz

σp

⎞
⎟⎟⎠ , (3.39)

where A is the matrix of the potential coefficients. The matrix A can be inverted to
give the capacitance matrix (this is the solution of the electrostatic problem):

⎛
⎜⎜⎝

σs

σf

σz

σp

⎞
⎟⎟⎠= A−1

⎛
⎜⎜⎝

Vs

Vf

Vz

Vp

⎞
⎟⎟⎠ . (3.40)

Once the capacitance matrix A−1 is known we can calculate the charges in-
duced on each electrode for any configuration of the potentials. The electric field is
given by the superposition of the drift field with the fields of all the grids, given by
(3.38).

In normal operating conditions the electric field in the amplification region is
much higher than the drift field. In this case λs/s1 � |σp| and the charge induced on
the high-voltage plane can be approximated by

σp = ε0
Vp −Vz

zp − z2
.

Then the matrix A of (3.39) can be reduced to a 3×3 matrix, neglecting the last row
and the last column,



110 3 Electrostatics of Tubes, Wire Grids and Field Cages

Table 3.2 Matrix of the potential coefficients (m2/farad) referring to the grids s, f and z in the
standard case

A = 1.13×108

⎛
⎜⎜⎝

6.64 3.56 4.00

3.56 5.62 4.00

4.00 4.00 8.28

⎞
⎟⎟⎠

A =
1
ε0

⎛
⎜⎜⎜⎜⎜⎝

z1 −
s1

2π
ln

2πrs

s1
z1 −

s1

2π
ln2 z1

z1 −
s1

2π
ln2 z1 −

s1

2π
ln

2πrf

s1
z1

z1 z1 z2 −
s2

2π
ln

2πrz

s2

⎞
⎟⎟⎟⎟⎟⎠

. (3.41)

Tables 3.2 and 3.3 give the coefficients of the matrix A of (3.41) and of its inverse
in a standard case:

z1 = 4mm, z2 = 8mm, s1 = 4mm, s2 = 1mm,

rs = 0.01mm, rf = rz = 0.05mm.

Using (3.38) we can now compute the potential of the high-voltage plane when
it is uncharged (σp = 0):

Vp = V (∞) = σs
z1

ε0
+σf

z1

ε0
+σz

z2

ε0
. (3.42)

The electric field in the drift region is zero.
In order to produce a drift field E we have to set the high-voltage plane at a

potential
Vp = −E(zp − z2)+V (∞). (3.43)

(E is defined positive and is the modulus of the drift field.)

3.2.3 Matching the Potential of the Zero Grid and of the Electrodes
of the Field Cage

When we set the potential of the high-voltage plane Vp to the value defined by (3.43),
the potential in the drift region (z− z2 � s2/2π) is given by

Table 3.3 Capacitance Matrix (farad/m2) referring to the grids s, f and z in the standard case

A−1 = 8.85×10−9

⎛
⎜⎜⎝

0.25 −0.11 −0.07

−0.11 0.32 −0.10

0.07 −0.10 0.21

⎞
⎟⎟⎠
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V (z) = −E(z− z2)+V (∞). (3.44)

Using equations (3.41) and (3.42) one can show that

Vz = V (∞)− s2

2πε0
σz ln

πrz

s2
,

and (3.44) can be written as

V (z) = −E(z− z2)+Vz +
s2

2πε0
σz ln

2πrz

s2
. (3.45)

Figure 3.7 shows V (z)−Vz as function of z− z2 in the geometry discussed in
the previous section with Vs = 1300V,Vg = Vz = 0 and with a superimposed drift
field of 100 V/cm. We notice that in this configuration the equipotential surface of
potential Vz is shifted into the drift region by about 2 mm. This effect has to be taken
into account when the potential of the electrodes of the field cage has to be matched
with the potential of the zero grid and when one has to set the potential of the gating
grid (see Sect. 3.3.2).

After the adjustment of all the potentials on the grids and the high-voltage plane
the field configuration is established. We show in Fig. 3.8 the field lines for the typ-
ical case of a TPC corresponding to Fig. 3.6 with z1 = 4mm, z2 = 8mm, s1 =
4mm, s2 = 1mm, rs = 0.01mm, rf = rz = 0.05mm, Vs = 1300V, Vf = Vz =
0, Ep = 100V/cm. One observes that the drift region is filled with a very uniform

Fig. 3.7 Potential in the
region of the zero grid as a
function of z in presence of
the drift field; example as
discussed in the text
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Fig. 3.8 Field lines for the typical case of a TPC with electrodes as in Fig. 3.6
(z1 = 4mm, z2 = 8mm, s1 = 4mm, s2 = 1mm, rs = 0.01mm, rf = rz = 0.05mm, Vs =
1300V, Vf = Vz = 0, Ep = 100V/cm)

field, but also in the amplification region we find homogeneous domains as expected
from (3.35). The electric field lines reach the sense wires from the drift region along
narrow paths.

3.3 An Ion Gate in the Drift Space

It is possible to control the passage of the electrons from the drift region into the
amplification region with a gate, which is an additional grid (‘gating grid’), located
inside the drift volume in front of the zero grid and close to it. This is important
when the drift chamber has to run under conditions of heavy background.
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In this section we deal with the principal (electrostatic) function of the ion gate
and how it is integrated into the system of all the other electrodes. Chapter 9 is
devoted to a discussion of the behaviour of ion gates and their transparency under
various operating conditions, including alternating wire potentials, and magnetic
fields.

The potential of the wires of the gating grid can be regulated to make the grid
opaque or transparent to the drifting electrons. In this section we neglect the effect
of the magnetic field and assume that the electrons follow the electric field lines.

In the approximation that the electric field in the amplification region is much
higher than the drift field, the variation of the potentials of the gating grid will not
change appreciably the charge distribution on the electrodes in the amplification re-
gion, and we can schematize the gating grid as a grid of wires placed in between two
infinite plane conductors: the high-voltage plane and the zero grid. The geometry is
sketched in Fig. 3.9.

3.3.1 Calculation of Transparency

If the electrons follow the electric field lines we can compute the transparency T ,
i.e. the fraction of field lines that cross the gating grid, from the surface charge on
the high-voltage plane and on the gating grid:

T = 1−
σ+

g

|σp|
, (3.46)

where σp is the surface charge density on the high-voltage plane (negative) and σ+
g

is the surface charge density of positive charges on the gating grid.
If we approximate the wires of the grid by lines of charge λ per unit length, the

surface charge density on the grid is simply λ/s, and the condition of full trans-
parency is

λ ≤ 0.

This approximation is no longer correct when the absolute value of λ is so small
that we have to consider the variation of charge density over the surface of the
wire. A wire ‘floating’ in an external electric field E is polarized by the field, which

Fig. 3.9 Scheme for the
inclusion of the gating grid
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Fig. 3.10 Electric field lines near an uncharged wire floating in a homogenous field

produces a surface charge density σD on the wire. It depends on the azimuth (see
Fig. 3.10):

σD = 2Eε0 cosθ , (3.47)

where θ is the angle between E and the radius vector from the centre to the surface
of the wire [PUR 63].

In the general case the wire has, in addition to this polarization charge, a linear
charge λ. The total surface charge density on the wire is

σw =
λ

2πr
+2Eε0 cosθ , (3.48)

r being the radius of the wire. An illustration is Fig. 3.11. When

|λ|
4πε0

� Er

Fig. 3.11 Dependence on
azimuth of the surface charge
density σw located on the
gating grid wire
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the polarization effect can be neglected. This is the case of the zero-grid, sense and
field wires, as discussed in the previous section.

There may be both positive and negative charges on the wires of the gating grid.
In order to calculate T we must now count the positive charges only. This can be
done using (3.48):

λ+ = 0 when
λ

2πr
< −2Eε0,

λ+ = λ when
λ

2πr
> 2Eε0,

λ+ =
λθ0

π
+4Eε0r sinθ0 (3.49)

when −2Eε0 <
λ

2πr
< 2Eε0,

θ0 = arccos
−λ

4πε0Er

and the surface charge density of positive charge on the gating grid is

σ+
g =

λ+

s3
. (3.50)

Using (3.46) and (3.50) we obtain the condition for full transparency in the gen-
eral case:

λg

2πrg
≤−2Eε0 or

σg

2πrg
s3 ≤−2Eε0. (3.51)

In the limiting condition of full transparency, the electric field between the gating
grid and the zero-grid increases by a factor

1+4π
rg

s3

with respect to the drift field.
Using (3.50) and (3.50) we can calculate the transparency in the special case of

σg = 0:

T = 1− 4rg

s3
.

The opacity of the gating grid in this configuration is twice the geometrical opac-
ity. To illustrate the situation of limiting transparency the field lines above and below
the fully open gate are displayed in Fig. 3.12a,b.

The drift field lines for our standard case are shown in Fig. 3.13a,b. We observe
that the drifting electrons arrive on a sense wire on one of four roads through the
zero grid – a consequence of the ratio of s1/s3 = 4.

In order to compute the transparency as a function of the gating-grid potential we
have to calculate the capacity matrix. Following the scheme of Sect. 3.2 we obtain
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Fig. 3.12a,b Field lines in the limiting case of full transparency. (a) Neighbourhood above and
below the gate (the electrons drift from above), (b) Enlargement around the region around
one wire

Fig. 3.13a,b Drift field lines in a standard case
(z1 = 4mm, z2 = 8mm, z3 = 12mm, s1 = 4mm, s2 = 1mm, s3 = 2mm). The field lines
between the sense wires and the other electrodes have been omitted for clariy. Squares: gating
grid; black circles: zero-grid; open circles: sense wires; crosses: field wires, (a) gating grid open
(maximal transparency), (b) gating grid closed
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(
Vp −Vz

Vg −Vz

)
=

1
ε0

⎛
⎝zp − z2 z3 − z2

z3 − z2 (z3 − z2)−
s3

2π
ln

2πrg

s3

⎞
⎠(σp

σg

)
(3.52)

and

(
σp

σg

)
= K

⎛
⎝z3 − z2 −

s3

2π
ln

2πrg

s3
−(z3 − z2)

−(z3 − z2) zp − z2

⎞
⎠(Vp −Vz

Vg −Vz

)
, (3.53)

where
K =

ε0

(zp − z2)
(

z3 − z2 −
s3

2π
ln

2πrg

s3

)
− (z3 − z2)2

and Vg is the potential of the gating grid. In the following we neglect the second
term in the denominator of the factor K, since zp− z2 � z3− z2 in the standard case.

Using (3.51) and (3.53) we can calculate the minimum value of Vg needed for the
full transparency of the gating grid:

Vg −Vz ≤
4πrg

s3

Vp −Vz

zp − z2

(
z3 − z2 −

s3

2π
ln

2πrg

s3

)
+

z3 − z2

zp − z2
(Vp −Vz). (3.54)

The second term of (3.54) is the potential difference that makes σg = 0. The first
term is the additional difference needed to eliminate the positive charges from the
gating grid. In a standard configuration the two terms are comparable.

In Fig. 3.14 we compare the transparency calculated according to (3.46–3.53)
for our standard case with measurements performed on a model of the ALEPH TPC
[AME 85-1]. There is good agreement between theory and experiment.

Fig. 3.14 Electron
transparency of a grid with
pitch 2 mm, as a function of
the common potential Vg
applied to the wires. The
electrode configuration
corresponds to Fig. 3.6. The
points represent
measurements by
[AME 85-1]. The line is a
function calculated using
(3.46–3.54)
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3.3.2 Setting of the Gating Grid Potential with Respect
to the Zero-Grid Potential

In Sect. 3.4 it was shown that because of the high field in the amplification region
the average potential at the position of the zero-grid does not coincide with Vz. The
potential in the drift region, where the gating grid has to be placed, is given by (3.45).

This formula can be extrapolated at z = z2:

V (z2) = Vz +
s2

2πε0
σz ln

2πrz

s2
, (3.55)

giving the effective potential of the zero-grid seen from the region where the gating
grid has to be placed.

In Sect. 3.3.1 we calculated the condition of full transparency, approximating the
zero-grid as a solid plane at a potential Vz and referring to it the potential of the
gating grid. In the real case Vg has to be referred to the effective potential V (z2)
given by (3.55).

From what has been shown so far one can deduce that by making Vg sufficiently
positive all drift field lines terminate on the gating grid and the transparency T is 0.
Figure 3.13a,bb shows how the drift field lines terminate on the gating grid.

3.4 Field Cages

The electric field in the drift region has to be as uniform as possible and ideally
similar to that of an infinitely large parallel-plate capacitor. The ideal boundary con-
dition on the field cage is then a linear potential varying from the potential of the
high-voltage membrane to the effective potential of the zero-grid.

This boundary condition can be constructed, in principle, by covering the field
cage with a high-resistivity uniform material. A very good approximation can be
obtained covering the inner surface of the field cage with a regular set of conducting
strips perpendicular to the electric field, with a constant potential difference ΔV
between two adjacent strips:

ΔV = EΔ ,

where Δ is the pitch of the electrode system.
The exact form of the electric field produced by this system of electrodes can

be calculated with conformal mapping taking advantage of the symmetry of the
boundary conditions [DUR 64]. Figure 3.15 shows the electric field lines and the
equipotentials near the strips in a particular case when the distance between two
strips is 1/10 of the strip width. The electric field very near to the strips is not uni-
form and there are also field lines that go from one strip to the adjacent one. The
transverse component essentially decays as exp(−2πt/Δ) where t is the distance
from the field cage (see Sect. 3.2), and when t = Δ the ratio between the transverse
and the main component of the electric field is about 10−3. At larger distances it
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Fig. 3.15 Electric field configuration near the strips of a field cage. Equipotential lines (broken)
and electric field lines (full) are shown. D: drift space; Δ : electrode pitch; t: coordinate in the drift
space

becomes completely negligible, showing that this geometry of the electrodes is in-
deed a good approximation of the ideal case. However, the insulators present some
problems.

3.4.1 The Difficulty of Free Dielectric Surfaces

The Dirichlet boundary conditions of the electrostatic problem to be solved in some
volume require the specification of a potential at every point of a closed boundary
surface. When conducting strips are involved that are at increasing potentials, insu-
lators between them are unavoidable, and the potential on these cannot be specified.
If the amount of free charge deposited on these surfaces were known everywhere,
one would have mixed boundary conditions, partly Dirichlet, partly Neumann, and a
solution could be found. In high-voltage field cages there is always some gas ioniza-
tion, and the amount of free charges ready to deposit on some insulator is infinitely
large. How can this uncertainty in the definition of the drift field be limited? There
are several solutions to this difficulty:

Controlled (small, surface or volume) conductivity of the insulator: For every
rate of deposit of ions there is some value of conductivity allowing the transport
of these ions sufficiently fast to the next electrode, so that their disturbing effect is
limited.

Retracted insulator surfaces: If the electrodes have the form indicated in
Fig. 3.16a,ba or b, any field E that may develop at the bottom of the ditch be-
tween conductors owing to charge deposit will be damped by a factor of the order of
exp(−πd/s) at the edge of the drift space. (For details of this electrostatic problem,
see e.g. [JAC 75, p. 72.]) A maximum field E is given by the breakdown strength of
the particular gas.
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Fig. 3.16a,b Field-cage
electrode configuration with
retracted insulator surfaces.
I: insulator, C: conductor, D:
drift space, (a) small gap, (b)
large gap

Thin insulator with shielding electrodes covering the gap from behind: Apart
from the system of main electrodes, there is another set separated by a thin layer of
insulator, and staggered by a half-step according to Fig. 3.17. The purpose of these
shielding electrodes at intermediate potentials is to regularize the field in the drift
region, but also to produce virtual mirror charges of any free charges that may have
deposited in the gap, thus reducing their effect in the drift space.

If we assume that by one of the measures described above the adverse effects
of any charge deposit are sufficiently reduced, we may imagine a smooth (linear)
transition of potential between neighbouring electrodes, and the exact form of the
electric field produced by the system of electrodes at increasing potentials can be
calculated as discussed at the beginning of this section.

Electrostatic distortions were studied by Iwasaki et al. [IWA 83].

Fig. 3.17 Field-cage electrode configuration with secondary electrode strips (SE) covering the
gaps between the main electrode strips (ME) behind a thin insulator foil (It). D: drift space; I:
insulator
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3.4.2 Irregularities in the Field Cage

In this subsection we present some studies that have arisen in practice when estimat-
ing the tolerances that had to be respected in the ALEPH TPC for the conductivity
of the insulator, for the match of the gating grid and for the resistors in the potential
divider. We quote the three relevant electrostatic solutions as examples of similar
problems in chambers with different geometry.

If all the electrodes of the field cage are set at the correct potential, the drift field
is uniform and parallel to the axis of the TPC in the whole drift volume. A wrong
setting of the potentials produces a transverse component of the electric field and
causes a distortion of the trajectories of the drifting electrons. In order to study this
effect in detail the drift volume of the TPC is schematized as a cylinder of length L
and radius A (see Fig. 3.18). The potentials defined on the surface of the cylinder
define the boundary conditions of the electrostatic problem and the drift field inside
the volume. If the potentials on the boundary do not vary with φ , the electric field
can only have a transverse component in the radial direction.

In the absence of magnetic field the electrons drift along the electric field line; an
electron placed at the position (r0, z0) reaches the end of the drift volume at a radial
position

r = r0 +
0∫

z0

Er(r,z)
Ez

dz.

The radial component of the field can be calculated solving the Poisson equation in
cylindrical coordinates [JAC 75, p. 108]. Since the ideal setting of the potential does
not produce radial electric field components it is convenient to use as a boundary
condition the difference between the actual and the ideal potentials. This is possible
because the Poisson equation is linear in the potential. Although we discuss the ex-
amples in a cylindrical geometry, they apply to other geometries in a similar way.

Non-Linearity in the Resistor Chain. The potential of the strips of the field cage are
defined connecting them to a linear resistor chain. The strips are insulated from the
external ground by an insulator that has a finite resistivity and that is in parallel with
the resistors of the chain. It can be shown that the resistance to ground of a strip
placed at a position z is

Fig. 3.18 Scheme of a
cylindrical TPC drift region
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R(z) = Rtot

[
z
L
− 1

6

( z
L

)3 Rtot

Rman

]
,

where Rtot is the resistance of the whole resistor chain and Rman is the resistance
of the insulator mantel across the wall of the insulator. This non-linear resistance
produces a potential distribution that differs from the linear one by

ΔV (z) =

[
Z
L
−
(

Z
L

)3
]

Vp
Rtot

Rman

Rtot

Rman
	 1,

where Vp is the potential of the central electrode. This error potential can be approx-
imated by

ΔV (z) ≈ 0.38
6

Vp
Rtot

Rman
sin
(

π
z
L

)
.

Following Jackson’s formalism [JAC 75] it can be shown that the radial displace-
ment of an electron drifting from the point (r, z) is

Δr ≈ 0.38
6

Rtot

Rman
L

iJ1

(
iπr
L

)

J0

(
iπA
L

) cos
(πz

L
−1
)

,

where J0 are the Bessel functions of order 0 and 1. Figure 3.19 shows a plot of Δr
as function of z for different values of r assuming L = A = 2m and Rtot/Rman = 10−3.

Mismatch of the Gating Grid. The potentials of the field cage have to match that of
the last wire plane as discussed in Sect. 3.2. An error ΔV in the potential of the last
electrode of the field cage produces a radial displacement

Δr = 2L
ΔV
Vp

∑
n

J1(xnr/A)
J1(xn)xn

(
cosh[π(L− z)(xn/A)− cosh(Lxn/A)

sinh(Lxn/A)

)
,

Fig. 3.19 Radial displacement r of the arrival point of an electron, caused by a resistance Rman of
the insulator mantle a thousand times the value of the resistor chain, Δr is shown as a function of
the starting point z, R in the example A = L = 2m
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Fig. 3.20 Radial displacement Δr of the arrival point of an electron, caused by a voltage mismatch
ΔV between the last electrode of the field cage and the last wire plane, amounting to ΔV/Vp = 10−4

of the drift voltage. Δr is shown as a function of the starting point (z, R) in the example A = L = 2m

where xn = knA and J0(kn) = 0.
Figure 3.20 shows a plot of Δr as a function of z for different values of r assuming

L = A = 2m and ΔV/Vp = 10−4.
Resistor Chain Containing One Wrong Resistor. If in the voltage-divider chain one
of the resistors (placed at z = z̄) has a wrong value, it induces an error in the potential
of the field cage:

ΔV (z) =
−ΔV

L
z, z < z̄,

ΔV
(

1− z
L

)
, z > z̄,

ΔV = Vp
ΔR
Rtot

,

where ΔR is the error in the resistance of that particular resistor and Rtot is the total
resistance of the chain. The induced radial displacement is

Fig. 3.21 Radial displacement Δr of the arrival point of an electron, caused by one wrong resistor
value R∗ = R+ΔR, where ΔR/Rtot = 1/400 of the value of the total resistor chain. Δr is shown as
a function of the starting point (z, R) in the example A = L = 2m
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Δr = L
ΔR
rtot

[
1
π ∑ iJ1(inπr)/L

J0(inπA)/L
1
n

cos

(
nπ z̄
L

)(
cos

nπz
L

−1
)]

.

Figure 3.21 shows a plot of Δr as a function of z for different values of r for a
particular case L = A = 2m, z = 1.4m, ΔR/Rtot = 1/400.

We have computed in this subsection three specific cases of field-cage prob-
lems in the spirit of showing the order of magnitude of the relevant electron
displacements. The design of the drift chamber must be such that the displace-
ment Δr induced by such irregularities remains small in comparison to the required
accuracy.
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Chapter 4
Amplification of Ionization

4.1 The Proportional Wire

Among all the amplifiers of the feeble energy deposited by a particle on its passage
through matter, the proportional wire is a particularly simple and well-known exam-
ple. When it is coupled with a sensitive electronic amplifier, a few – even single –
electrons from the ionization of a particle can be observed, which create ionization
avalanches in the high electric field near the surface of the thin wire. The develop-
ment of the proportional counter started as long ago as 1948; for an early review,
see [CUR 58]. The proportional counter is also treated in text books on counters in
general, for example those of Korff [KOR 55] and Knoll [KNO 79]. The latter con-
tains a basic list of reference texts. The classical monograph by Raether [RAE 64]
deals with electron avalanches in a broader context.

As an electron drifts towards the wire it travels in an increasing electric field E,
which, in the vicinity of the wire at radius r, is given by the linear charge density λ
on the wire:

E =
λ

2πε0

1
r

.

In the absence of a magnetic field, the path of the electron will be radial. The
presence of a magnetic field modifies the path (as discussed in Chaps. 2 and 7) but,
if the electric field is strong enough, the trajectory terminates in any case on the
wire.

Once the electric field near the electron is strong enough so that between colli-
sions with the gas molecules the electron can pick up sufficient energy for ionization,
another electron is created and the avalanche starts. At normal gas density the mean
free path between two collisions is of the order of microns; hence the field that starts
the avalanche is of the order of several 104 V/cm, and the wire has to be thin, say a
few 10−3 cm, for 1 or 2 kV.

As the number of electrons multiplies in successive generations (Fig. 4.1), the
avalanche continues to grow until all the electrons are collected on the wire. The
avalanche does not, in general, surround the wire but develops preferentially on
the approach side of the initiating electrons (cf. Sect. 4.3). The whole process

W. Blum et al., Particle Detection with Drift Chambers, 125
doi: 10.1007/978-3-540-76684-1 4, c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 4.1 Schematic
development of the
proportional wire avalanche

develops in the longitudinal direction over as many free paths as there are gener-
ations, say typically over 50 to 100μm. This part ends after a fraction of a nanosec-
ond, under normal gas conditions. The physical processes inside the avalanche
are quite complicated, as they involve single and multiple ionization, optical and
metastable excitations, perhaps recombinations, and energy transfer by collisions
between atoms, much the same as discussed in Sect. 1.1. The de-excitation of
metastable states may in principle increase the duration of the avalanche up to
the collision time between the molecules, but not much is known about
this.

The proportional wire owes its name to the fact that the signal is proportional
to the number of electrons collected. This proportionality is possible to the extent
that the avalanche-induced changes of the electric field remain negligible compared
to the field of the wire. Referring to Sect. 4.5.1, we may characterize the regime
of proportionality as that in which the charge density in the avalanche is negligi-
ble compared with the linear charge density of the wire. The charge density of the
avalanche is given by the product of the gain factor and the number of electrons that
start the avalanche, divided by its width.

A very interesting role is played by the photons, which are as abundant as elec-
trons because the relevant cross-sections are of the same order of magnitude. A
small fraction of them will be energetic enough to ionize the gas, in all probability
ionizing a gas component with a low ionization potential. If it now happens that
these ionizing photons travel further, on the average, than the longitudinal size of

Fig. 4.2 Mechanism of
breakdown by
photoionization of the gas
outside the cylinder that
contains the full avalanche
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the avalanche, then the electrons they produce will each give rise to another full
avalanche and the counter may break down. In order to formulate a stability crite-
rion, we refer to the avalanche of Fig. 4.2, created by one electron e1. Let us call ne

the number of electrons in the avalanche and nph the number of energetic photons,
and use q to denote the average probability that one of them ionizes the gas outside
the radius rmin. Breakdown occurs if

nphq > 1 , xneq > 1 ,

where x is the ratio nph/ne. This ratio may be expected to stay roughly constant as
ne is changed by a variation of the wire voltage.

Fig. 4.3a,b Optical properties of chamber gases: (a) Outstanding spectral emission lines of the
neutral Ar atom [HAN 81]. The intensities are approximate and are plotted on a logarithmic scale.
(b) Absorption cross-sections for UV photons of the normal alkanes [SCH 62]
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Table 4.1 Common quench gases

Methane CH4
Ethane C2H6
Propane C3H8
Butane C4H10
Pentane C5H12
Isobutane (CH3)2CHCH3
Carbon dioxide CO2
Ethylene (C2H2)2
Methylal CH2(CH2OH)2

A similar consideration applies also to photons from the avalanche that reach the
conducting surfaces of the cathodes, where they may create free electrons by the
photoelectric effect.

It is because of these far-travelling photons that an organic ‘quench gas’ needs
to be present. Its effect is to reduce q allowing larger values of ne, and hence larger
gain. Organic molecules, with their many degrees of freedom, have large photoab-
sorption coefficients over a range of wavelengths that is wider than that for noble
gas atoms. Some examples are given in Fig. 4.3a,b, which also contains a picture of
the most prominent emission lines of the argon. The photoabsorption spectrum of
argon was shown as a graph in Fig. 1.4 in the context of a calculation of particle ion-
ization. Table 4.1 contains a list of common quench gases. Inorganic quench gases
have been studied by Dwurazny, Jelen, and Rulikowska–Zabrebska [DWU 83].

4.2 Beyond the Proportional Mode

If the avalanche amplification is increased beyond the region of proportionality, the
space charge of the positive ions reduces appreciably the field near the head of the
avalanche, that is the field experienced by the electrons between the wire and the
positive cloud. The amplification is smaller for any subsequent increment and we
are in the regime of ‘limited proportionality’.

Near the tail of the avalanche, however, we have an increase of the electric
field owing to the positive ions, especially once the fast-moving electrons have
disappeared into the wire. This situation leads to two different kinds of multiplica-
tive processes, depending on the behaviour of the photons:

• If the UV absorption of the quench gas is very strong, the photons in the
avalanche produce ionization near their creation point, including the region near
the tail of the avalanche where the electric field is particularly large. This starts
the phenomenon of the ‘limited streamer’, which is a backward-moving multipli-
cation process in the sense of a series of avalanches whose starting points move
further and further away from the wire. In a paper by Atac, Tollestrup, and Potter
[ATA 82], it is suggested that energetic photons are created by the recombination
process with cool electrons when the field at the avalanche head is sufficiently
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reduced. Under the influence of the growing charge, the starting points of suc-
cessive new avalanches move further outwards. Once the streamer has reached
a certain length that depends on the wire voltage, typically 1 to 3 mm, it comes
to an end. The total charge is almost independent of the amount of charge that
originally started the process. Figure 4.4a,b shows a typical pulse height distribu-
tion of the limited streamer for individual electrons (b) and for ∼100 electrons (a)
[BAT 85]: they give approximately the same total charge. The self-quench occurs
because the electric field becomes weaker as the avalanches are produced further
away from the wire. But the exact mechanism is not well understood. More de-
tails can be found in the articles by Alekseev et al. [ALE 80], Iarocci [IAR 83]
and Atac et al. [ATA 82] and in the references quoted therein. A summary and
overview has been given by Alexeev, Kruglov, and Khazins [ALE 82].

As the high voltage of a wire tube with the correct quenching gas is increased
(Fig. 4.5), the collected charge at first follows a nearly exponential mode (pro-
portional mode), then flattens off as the avalanche charge density approaches the
wire charge density (limited proportional mode), and then suddenly jumps to the
limited streamer mode where the charge multiplication is one and a half orders
of magnitude larger. This behaviour is reported in Fig. 4.5. The collected charge
continues to rise more slowly up to the general breakdown of the counter. F.E.

Fig. 4.4a,b Streamer charge
distribution for (a) β -rays
and (b) photoelectrons from
[BAT 85]. Aluminium tube
1× 1cm2 cell size, 50μm
wire, gas mixture Ar(65%) +
Isobutane(65%), wire poten-
tial 3.7 kV
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Fig. 4.5 Collected charge
as a function of the high
voltage, measured by Atac
et al. [ATA 82] on a 100μm
diameter wire in a tube
12 × 12mm2, filled with
Ar(49.3%)+C2H6(49.3%)+
CH3CH2OH(1.4%)

Taylor argues that the size of the limited streamer is essentially given by electro-
static considerations [TAY 90].

• If the UV absorption of the gas is so low that ionizing photons can travel distances
that are comparable to the counter dimension, then multiplicative processes may
develop along the full length of the wire. The wire is said to be in Geiger mode
if the external electric circuit terminates the discharge with the help of a large
HV feed resistor. The size of the signal is therefore also independent of the
original charge. The Geiger counter is described, for example, in [KNO 79] and
[KOR 55].

4.3 Lateral Extent of the Avalanche

The electrons from an ionization track, which are collected on a wire and start an
avalanche there, do not usually arrive at the same point in space, but there is some
spread between them. This happens not only because the track was originally ex-
tended in space, and every electron is guided on its drift path to a different place
near the wire, but also because of the diffusion in the gas during the drift. The pro-
portional avalanche has a lateral extent that is at least as large as this spread.

In the avalanche process itself there is a lateral development associated with the
multiplication of charges, and this is mainly due to diffusion of electrons, the elec-
trostatic repulsion of charges, and the propagation of ionizing photons. The intrinsic
lateral size of an avalanche therefore depends on the gas (collision cross-section and
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UV absorption), on the number of charges in the avalanche and their density and on
the electron energy that is obtained in the various parts of the multiplication process.
If one wants to know whether the charges go fully around the wire or stay on one
side, then the wire diameter also plays an important role.

The spread of avalanches on a wire has been studied experimentally by Okuno
et al. [OKU 79], by observing the signals from the positive ions in a segmented
cathode tube surrounding the wire. In a mixture of Ar(90%) + CH4(10%), the
avalanches, created by a 55Fe source on a wire of 25μm diameter, occupied only
100◦ in azimuth (FWHM) in the proportional region (total charge below 106 elec-
trons). When the voltage was raised, the avalanche started to surround the anode
wire. Figure 4.6 shows how the azimuthal width increased with the total charge of
the avalanche. The increase came at smaller total charges when the concentration
of the quenching gas was smaller. The influence of the UV photons was more pro-
nounced at higher charge multiplication. The X-ray photon of the 55Fe source has
an energy of 5.9 keV and creates approximately 227 electrons. The finite size of the
electron cloud produced by the X-ray photon can be neglected.

In a detailed Monte Carlo simulation of the scattering processes involved in
the multiplication, Matoba et al. have shown how a small avalanche develops
in three dimensions [MAT 85]. In Fig. 4.7 we reproduce a picture of their elec-
tron density. In recent years the computational techniques for the simulation of
such processes have been considerably advanced; see for example [GRO 89]. We
may expect more detailed insight into the dynamics of the avalanche as com-
puter codes are developed that describe not only the various collision phenomena
between the electrons, ions and gas molecules but also the important effect of the
photons.

Fig. 4.6 Angular spread (FWHM) of the avalanche from 55Fe X-rays in various Ar + CH4 mix-
tures as a function of the total charge in the avalanche. The anode wire had a diameter of 25μm
[OKU 79]
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Fig. 4.7 Two-dimensional
displays of the electron den-
sity in a small avalanche
created by a Monte Carlo
simulation from a single elec-
tron. Photon ionization was
neglected [MAT 85]

4.4 Amplification Factor (Gain) of the Proportional Wire

The multiplication of ionization is described by the first Townsend coefficient α . If
multiplication occurs, the increase of the number of electrons per path ds is given
by

dN = Nα ds. (4.1)

The coefficient α is determined by the excitation and ionization cross sections of the
electrons that have acquired sufficient energy in the field. It also depends on the vari-
ous transfer mechanism discussed in Chap. 1. Therefore, no fundamental expression
exists for α and it must be measured for every gas mixture. It also depends on the
electric field E and increases with the field because the ionization cross-section goes
up from threshold as the collision energy ε increases. If the gas density ρ is changed
while keeping the distribution of ε fixed (that is, at fixed E/ρ), then α changes pro-
portionally with the density because all the linear dimensions in the gas scale with
the mean free collision length (cf. Chap. 2). Therefore we may write the functional
dependence of α as

α
(

E
ρ

,ρ
)

=
α0

ρ0
ρ = f

(
E
ρ

)
ρ . (4.2)
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Fig. 4.8 First Townsend
ionization coefficient α mea-
sured for some noble gases as
a function of the electric field
E, collected by von Engel
[ENG 56]. The plots show
α/p versus E/p, where p is
the gas pressure

In Fig. 4.8 we show measurements with pure noble gases in the form of α over
the gas pressure as a function of the electric field over the gas pressure, at normal
temperature, as obtained by von Engel [ENG 56].

The amplification factor on a wire is given by integrating (4.1) between the point
Smin where the field is just sufficient to start the avalanche and the wire radius a:

N/N0 = exp

a∫
smin

α(s)ds = exp

E(a)∫
Emin

α(E)
dE/ds

dE . (4.3)

Here N and N0 are the final and initial number of electrons in the avalanche; dE/ds is
the electric field gradient. The minimal field Emin needed for ionization to multiply
is given by the energy required to ionize the molecules in question, divided by the
mean free path between collisions; therefore Emin must be proportional to the gas
density.

The electric field near a wire whose radius is small compared with the distance to
other electrodes is given by the charge per unit length, λ , as a function of the radius:

E(r) =
λ

2πε0r
, (4.4)

where ε0 = 8.85× 10−12 A s/(V m), and λ can be derived from the wire voltages
and the capacitance matrix (cf. Chap. 3). Inserting (4.4) into (4.3) we have

N/N0 = exp

E(a)∫
Emin

λα(E)
2πε0E2 dE . (4.5)
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The ratio N/N0 is usually called gain. In the following paragraphs we use G =
N/N0 to indicate it.

4.4.1 The Diethorn Formula

Diethorn [DIE 56] derived a useful formula for G by assuming α to be proportional
to E. Looking at Fig. 4.8, this is not unreasonable for heavy noble gases between
102 and 103 [V/cm Torr], a typical range of fields near thin wires. Inserting α = βE
into (4.5) gives

lnG =
βλ

2πε0
ln

λ
2πε0aEmin

. (4.6)

The value of β can be related in the following way to the average energy eΔV
required to produce one more electron. The potential difference between r = a and
r = smin that corresponds to relation (4.3) is

Φ(a)−Φ(Smin) =
Smin∫
a

E(r)dr =
λ

2πε0
ln

Smin

a
=

λ
2πε0

ln
λ

2πε0aEmin
. (4.7)

It gives rise to a number Z of generations of doubling the electrons in the avalanche:

Z = [Φ(a)−Φ(Smin)]/ΔV , (4.8)

G = 2Z , (4.9)

lnG =
ln2
ΔV

λ
2πε0

ln
λ

2πε0aEmin
. (4.10)

We recognize that in this model the constant β of (4.6) has the meaning of the
inverse of the average potential required to produce one electron in the avalanche
multiplied by ln 2.
We write Emin, which is proportional to the gas density ρ , in the form

Emin(ρ) = Emin(ρ0)
ρ
ρ0

, (4.11)

where ρ0 is the normal gas density. We finally obtain

lnG =
ln2
ΔV

λ
2πε0

ln
λ

2πε0aEmin(ρ0)(ρ/ρ0)
. (4.12)

Relation (4.12) was compared with measurements using proportional counter
tubes, and was shown to be better than the older models of Rose–Korff and Curran–
Craggs; see [HEN 72, WOL 74, KIS 60] and the literature quoted therein. In a
proportional counter tube with inner radius b and wire radius a, the charge density
λ is related to the voltage V by
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λ
2πε0

=
V

ln(b/a)
. (4.13)

Therefore, (4.12) can also be expressed in the following form (Diethorn’s formula):

lnG =
ln2

ln(b/a)
V

ΔV
ln

V
ln(b/a)aEmin(ρ0)(ρ/ρ0)

. (4.14)

Experimentally, we vary ρ/ρ0,a and V/ ln(b/a), and measure G. A plot of

lnG ln(b/a)
V

versus ln
V

ln(b/a)a(ρ/ρ0)

must be linear and yields the two constants Emin(ρ0) and ΔV . Figure 4.9 shows
such a plot made by Hendricks [HEN 72] for two xenon gas mixtures, and Table 4.2
contains a collection of Diethorn parameters measured in this way, typically for
amplification factors between 102 and 105. They are only in moderate agreement
with each other.

We recognize the value of formulae (4.12) and (4.14), discussed above, more
from a practical than from a fundamental point of view. Obviously, for a given gas
mixture, the Townsend coefficient α(E) must first be known accurately as a function
of the electric field. Then the multiplication factor can be calculated using (4.5). See
also Charles [CHA 72] and Shalev and Hopstone [SHA 78], who compared and
criticized various formulae for the gas gain.

Fig. 4.9 Diethorn plot of
amplification measurements
using two Xe gas mixtures
[HEN 72]; p = ρ/ρ0
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Table 4.2 Measured Diethorn parameters for various gases

Gas mixture Emin(ρ0) ΔV Refs.
(k V/cm) (V)

Ar(90%)+CH4(10%) 48± 3 23.6±5.4 HEN 72
Ar(95%)+CH4(5%) 45± 4 21.8±4.4 HEN 72
CH4 69± 5 36.5±5.0 HEN 72
C3H8 100± 4 29.5±2.0 HEN 72
He(96%)+(CH3)2CHCH3(4%) 148± 2 27.6±3.0 HEN 72
Ar(75%)+Xe(15%)+CO2(10%) 51± 4 20.2±0.3 HEN 72
Ar(69.4%)+Xe(19.9%)+CO2(10.7%) 54.5 ± 4.0 20.3±2.5 HEN 72
Ar(64.6%)+Xe(24.7%)+CO2(10.7%) 60± 5 18.3±5.0 HEN 72
Xe(90%)+CH4 (10%) 36.2 33.9 WOL 74
Xe(95%)+CO2(5%) 36.6 31.4 WOL 74
CH4(99.8%)+Ar(0.2%) 171 38.3 KIS 60
Ar(92.1%)+CH4(7.9%) 77.5 30.2 DIE 56
CH4(76.5%)+Ar(23.5%) 196 36.2 DIE 56
CH4(90.3%)+Ar(9.7%) 21.8 28.3 DIE 56
Ar(90%)+CH3CH2OH(10%) 62 27.0 DIE 56
CH4 144 40.3 DIE 56

4.4.2 Dependence of the Gain on the Gas Density

The variation of the gain with the gas density is of particular interest since very
often the chambers are operated at atmospheric pressure and the gas density changes
proportionally to it. From (4.10) and (4.11), a small relative change dρ/ρ of the
density can be seen to result in a change of amplification of

dG
G

= − λ ln2
ΔV2πε0

dρ
ρ

. (4.15)

In practical cases the factor that multiplies dρ/ρ ranges between 5 and 8: varia-
tion of the gas pressure causes global variations of the gain that are typically 5 to 8
times larger. Since the gas pressure can be easily monitored these variations can be
corrected for.

4.4.3 Measurement of the Gain Variation with Sense-Wire
Voltage and Gas Pressure

In this section we give some measurements of the variation of the gain with the
sense wire voltage and with the atmospheric pressure. These measurements have
been obtained using prototypes of the ALEPH TPC that had a cell geometry as
described in Sect. 3.2.

Figure 4.10 shows a plot of the gain as a function of the voltage (cf. (4.14)) using
the Diethorn parameters for an Argon (90%)–CH4(10%) mixture (cf. Table 4.2) and
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Fig. 4.10 Gain as a function
of the sense-wire voltage in a
chamber with a cell geometry
as described in Sect. 3.2. Dots
are measurements done with
a model of the ALEPH TPC;
the full line is computed with
(4.14) and Table 4.2; broken
lines show the error margins
introduced by the error in
Table 4.2

assuming atmospheric pressure. The two side-lines show the large uncertainty in
the prediction of the gain owing to the large error (20%) in ΔV . The superimposed
experimental points have been measured with a chamber under the same operating
conditions. The agreement is very good.

Figure 4.11 shows the variation of the atmospheric pressure p over a period of
2 days (a) and the corresponding average pulse height measured by the chamber
when detecting the electrons produced in the gas by the absorption of X-rays from
a 55Fe source (b). One notices how the measured pulse height follows the variations
of the pressure (note the zero-suppressed scales of the two plots). The chamber
was operated in an Argon (90%)–CH4(10%) mixture. The sense-wire voltage was
1.4 kV and the field wires were grounded. Using Table 3.5 we can compute the
linear charge density λ of the sense wires and from the measured value of ΔV

Fig. 4.11 (a) Atmospheric pressure p as a function of the time in a time interval of two days. (b)
Average pulse-height measured by the chamber in the same period. Measurements done with the
ALEPH TPC



138 4 Amplification of Ionization

(cf. Table 4.2) using (4.15) we predict that

dG
G

= −(6.7±1.5)
dp
p

.

Inspecting Fig. 4.11 a we read an overall change of pressure of 0.8% and predict a
change of gain of −(5.5±1.2)%, in agreement with the variation (−4%) shown in
Fig. 4.11b.

4.5 Local Variations of the Gain

Equation (4.12) shows that the gain depends on the local charge density of the wire
λ . A relative change dλ/λ , as may result from geometrical imperfections of a wire
chamber, from fluctuations of the supply voltage, or from space charge near the wire
will change the amplification by the factor [cf. (4.12)]

dG
G

=
(

lnG+
λ ln2

ΔV 2πε0

)
dλ
λ

. (4.16)

In practical cases the two factors in the parentheses of the previous equation are of
the same order of magnitude and their sum lies in the range 10–20: the local relative
variations of the charge density cause local relative variations of the gain that are
typically 10–20 times greater.

In Sect. 3.2 we saw how the linear charge density λ depends on the potentials
and on the geometry of the wire chamber, assuming that there is an ideal geometry.
Real chambers deviate from the ideal geometry: the wires are not infinite and we
can expect changes in the charge density in the region close to the wire supports.
Moreover, the mechanical components of the chamber have small construction im-
perfections, which can induce local changes in the charge density along the wire.
The mathematical solution of the electrostatic problem is not simple because as
soon as we introduce variations in the ideal geometry we lose the symmetry of the
boundary conditions.

In drift chambers that are operated in high-density particle fluxes there is another
problem: the local charge density on the wire seen by ionization electrons when they
reach the wire can be modified by the presence of the ions which were produced in
a previous avalanche and still are drifting inside the drift cell.

4.5.1 Variation of the Gain Near the Edge of the Chamber

In wire chambers the gain usually drops to zero near the support frame. This be-
haviour depends on the details of the geometry and extends over a region of the
wire comparable to the distance between the sense-wire grid and the cathode plane.
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Fig. 4.12 Measured pulse heights of wire signals created by a laser beam near the wire support
frame as a function of the distance between the frame and the laser beam. Guard strips can extend
the sensitive length of the wire. The distance between neighbouring grids was 4 mm [BRA 85]

Figure 4.12 from [BRA 85] shows the relative variation of the gain near the edge of
a wire chamber.

The dependence of the wire gain on the distance from the chamber edge can be
modified by the addition of field correction strips [BRA 85], [AME 86c], which can
be trimmed to an appropriate voltage to modify the electric field in the region of the
frame and to obtain a more uniform charge density (see Fig. 4.12).

4.5.2 Local Variation of the Gain Owing to Mechanical
Imperfections

Here we want to evaluate the extent to which small deviations from the ideal ge-
ometry can affect the charge density on the sense wires, and we refer again to the
example discussed in Sect. 3.2. The problem has been extensively studied by Erskine
[ERS 72], and we refer to his paper for a general discussion.

The order of magnitude of the charge variation induced by some imperfections of
the chamber can be obtained using the general formulae of Sect. 3.2: this is possible
for imperfections that can be approximated to a large extent as a global variation of
the geometry of the chamber. For example, the effect of a bump in the cathode plane
can be evaluated from the global effect of a reduction of the distance between the
sense-field grid and the cathode plane.

In the following we refer to the notation of Sect. 3.2 and to the geometry sketched
in Fig. 3.4. Equation (3.39) gives the potentials of the electrodes as a function of
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their charges and of the matrix of the potential coefficients A:

V = Aσ , (4.17)

where the σi = λi/Si are the linear charge densities on the wires of each grid divided
by the pitch of the grid. A change in the geometry of the wire chamber induces a
change in the matrix. Differentiating (4.17) with the fixed values of the potential V,
we obtain

Adσ = −dAσ ,

where dσ is the vector of the charge-density variations and dA is the matrix of
the variations in the potential coefficients induced by a particular change in the
geometry of the chamber. Using the previous equation, we obtain

dσ = −A−1dAσ . (4.18)

As a first example we calculate the charge-density variation induced by a dis-
placement of the cathode plane. The matrix dA can be calculated by differentiating
(3.41) with respect to z, noting that the effect of a displacement dz of the cathode
plane changes z1 and z2 by the same amount (cf. Fig. 3.4):

dA = −dz
ε0

⎛
⎜⎜⎝

1 1 1

1 1 1

1 1 1

⎞
⎟⎟⎠ . (4.19)

From (4.18),

dσ =
dz
ε0

A−1

⎛
⎜⎜⎝

σs +σF +σz

σs +σF +σz

σs +σF +σz

⎞
⎟⎟⎠ . (4.20)

In the approximations of Sect. 3.2 the quantity σs + σF + σz is the charge density
on the cathode plane. The charge-density variation dσ induced by a displacement
of the cathode plane vanishes if there are no charges on the plane. In the particular
geometry of the example considered in Sect. 3.2, we obtain:

dσs = (70m)−1dz(σs +σF +σz) .

As another example we now compute the charge variation induced by a change in
the sense-wire diameter. Differentiating (3.41) with respect to the sense-wire radius
rs yields

dA = − s1

2πε0

drs

rs

⎛
⎜⎜⎝

1 0 0

0 0 0

0 0 0

⎞
⎟⎟⎠ , (4.21)
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and

dσ = − s1

2πε0

drs

rs
A−1

⎛
⎜⎜⎝

σs

0

0

⎞
⎟⎟⎠ . (4.22)

For the particular example considered in Sect. 3.2 we get

dσs

σs
= 0.16

drs

rs
.

The effect of the displacement of a single wire is more difficult. In this case we
cannot use (3.41) because it was calculated for a set of symmetric grids, and this
symmetry is lost when a single wire is displaced. We note that in first order the
displacement of a wire does not affect the charge density of the wire itself (again
because of the symmetry), but only that of other wires close to it. The displacement
of a field wire changes the charge density of the two closest sense wires proportion-
ally to its own charge density. If there is no charge density on the field wires, their
displacement does not affect the gain of the chamber.

Table 4.3 shows the gain variations induced by mechanical imperfections in the
geometry of the example discussed here. We have assumed that the setting of the
voltages produces a gain of 104, and using (4.16) we compute the relation between
the relative variation of the gain and the local relative charge-density variation:

dG
G

= (15.9±1.5)
dσs

σs
.

The same gain can be obtained for different settings of the sense-wire voltage
(Vs) and the field-wire voltage (VF) that leave the charge density on the sense wire
σs unchanged. Using Table 3.3 we compute the condition of constant gain:

0.25Vs −0.11VF = constant .

The different settings correspond to different values of the ratio σF/σs. Again using
Table 3.3 we deduce that if VF/Vs = 0, then σF/σs = −0.44, while σF/σs = 0 when
VF/Vs = 0.34. As shown in Table 4.3 the ratio σF/σs influences the local variations
of the gain that are due to mechanical imperfections.

Table 4.3 Gain variation dG/G induced by mechanical imperfections in the geometry discussed
in Sect. 3.2. A gain of 104 is assumed and all displacements (Δ ) are in mm. σF/σs is the ratio
between the charge densities on the field wires and the sense wires

Imperfection dG/G

Bump on the pad plane 0.69Δz(1+σF/σs)
Displacement of a field wire 1.1ΔxσF/σs
Displacement of a sense wire 0.2Δx
Variation of the sense wire diameter 2.5Δr/r
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4.5.3 Gain Drop due to Space Charge

When the avalanche has come to an end, all electrons are collected on the anode and
the space near the wire is filled with the remaining positive ions. We may assume
that in the regime of proportional wire amplification, the amount of charge in the
avalanche is small compared to the charge on the wire (integrated along the wire
over the lateral extent of the avalanche). The positive ions are moving away from
the wire at relatively low speed. With a mobility of a few cm/s per V/cm, a typical
speed near the thin wire (E ∼ 2 × 105 V/cm) would be several 105 cm/s, and a
hundred times less at a hundred times the radius. The avalanche charge obviously
takes hundreds of microseconds to settle on a cathode several millimetres away.

When there is a continuous particle flow with a much higher frequency than that
corresponding to the ion travel time, we have a stationary situation, and the travel-
ling ions build up a stationary space charge density ρ(x) in the chamber volume.
This reduces the electric field close to the wire and therefore the gas gain, which
poses a fundamental limitation on the rate capability of any wire chamber.

In order to calculate ρ we consider in Figure 4.13 a small area A1 of the wire
surface which shows an electric field E1 and which releases positive ions of charge
q at a constant rate ν . The ions are moving with a velocity of v = μE1 where μ is
the ion mobility. Within a time Δ t, the charge Q1 = qν Δ t is entering the volume
V1 = A1vΔ t, which results in a charge density of ρ1 = Q1/V1 = qν/μE1A1 close to
the wire surface. As the ions are moving away from the wire along the electric field
lines they are passing an equipotential area A2 in a field E2, and the charge density
at this position is ρ2 = qν/μE2A2. From Gauss’ Law we know that E2A2 −E1A1 =
Q/ε0, where Q is the total charge contained in the ‘flux tube’ between A1 and A2.
If the electric field due to the space charge is small compared to the electric field

A1, E1

A2, E2

A3, E3

Fig. 4.13 Anode wire with some field lines (continuous) and some equipotential lines (broken).
The A’s symbolize the areas of the equipotential surfaces between the same field lines that come
from the border of the original area A1 on the wire surface. The E’s represent the fields on the
equipotential surfaces. As the ions travel along the field lines they become slower by the same
factor as the field lines go apart, resulting in a constant charge density in the volume (‘flux tube’)
filled with ions originating from A1
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from the wire, which is usually the case, we may neglect Q and obtain in first order
that

E1A1 = E2A2 and therefore ρ1 = ρ2.

We have found the remarkable result that the charge density is constant along the
entire ‘flux tube’ at any distance from the wire. In case the electric field E1 and
the ion flux ν are uniform around the wire surface, which is a common case, we
find a constant charge density in the entire volume that is filled by the field lines
originating from the wire.

For a wire of radius a with a surface field of E1, a charge deposit q at a rate of R
per unit length of the wire we therefore find a uniform space charge density of

ρ =
qR

μE12aπ
. (4.23)

Next we investigate the gas gain drop due to the presence of ρ . Setting a wire to
potential V0 amounts to placing a certain charge λ on the wire. The charge density ρ
creates an electric field Es(x) which is superimposed on the electric field of the wire
charge λ . The resulting potential difference due to ρ is ΔV =

∫
Es(x)ds, where the

path of integration is taken from the wire surface to the cathode. Consequently the
wire charge λ is reduced such that its contribution to the potential is V0 −ΔV . The
gain reduction due to the space charge ρ is therefore equal to a voltage reduction
of ΔV in the absence of space charge. This effective voltage drop of the wires in a
chamber is therefore calculated in first order by removing all wires and calculating
the potential difference between wire positions and cathode due to the charge density
ρ . We will now discuss two examples.

First we examine a drift tube (cf. Section 3.1) exposed to a particle flux of Φ per
unit detector area and a total avalanche charge of q per particle. With R = 2bΦ and
the wire surface field of E1 = V0/(a ln b

a ) we find the uniform space charge density

ρ =
bqΦ ln b

a

πμV0
. (4.24)

In the absence of the wire, ρ produces an electric field of Es(r) = ρr/2ε0, so the
potential difference between wire position and tube wall is

ΔV =
∫ b

0
Es(r)dr = ρb2/4ε0 =

b3qΦ ln b
a

4πε0μV0
. (4.25)

The voltage drop is proportional to the third power of the tube radius, so a reduction
of the tube radius is the most effective way to increase the rate capability. As an
example, Fig. 4.14 shows the gain reduction in the drift tubes of the ATLAS muon
spectrometer [ATL 00]. The measurements are well explained by the theory outlined
above.

As a second example we investigate a wire chamber schematically shown in
Fig. 4.15, where a row of wires with a pitch of s is positioned symmetrically be-
tween two grounded cathode planes at a distance h. Setting all wires to potential V0,
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Fig. 4.14 Calculated and measured gain drop in drift tubes due to photon background in the
ATLAS muon spectrometer. The parameters are b = 15mm, a = 25μm, V0 = 3170V, μ =
0.55cm2/V s. The gain of 2 × 104 and primary charge deposit of 1400 electrons/photon yields
q = 4.5pC. A rate of R = 1000Hz/cm results in a voltage drop ΔV = −17V and therefore a gas
gain reduction of 10%

the electric field on the wire surface is given by E1 =V0/a log rc
a where rc is a length

with an average value of the same order of magnitude as s and h. A particle flux of
Φ results in R = sΦ and we therefore have a uniform charge density of

ρ =
sqΦ ln rc

a

2πμV0
. (4.26)

The electric field due to the charge density ρ in the absence of the wires is given by
E(z) = ρz/ε0, and the resulting potential difference is

ΔV =
∫ h

0
E(z)dz =

h2

2ε0
ρ =

sh2qΦ ln rc
a

4πε0μV0
. (4.27)

As before, the voltage drop mainly depends on the chamber dimensions s and h
which must be small for a high rate capability of the wire chamber.

One should be aware of the fact that the ion mobility μ is often not known very
well due to the presence of charge transfer in the migration of ions. This was elabo-
rated on the last pages of Sect. 2.2.2.

Fig. 4.15 Multiwire
proportional chamber

S
Z = h

Z = 0
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4.6 Statistical Fluctuation of the Gain

The gain of an avalanche is equal to the number of ion pairs within it divided by
the number of electrons that started the avalanche. In the regime of proportionality,
the average number of electrons produced in the avalanche is proportional to the
number of initial electrons. We are interested in the fluctuation in the number of
electrons that is caused by the random nature of the multiplication process.

We may assume that each initiating electron develops its own small avalanche,
independent of the presence of the others nearby. If we want to know the probabil-
ity distribution of the number N of the ions in the total avalanche we simply sum
over the probability distribution P(n) of the number n of electrons in the individual
small avalanches. The first step is to find an expression P(n), which is done in the
following sections.

If the number k of initiating electrons is large, the central-limit theorem of statis-
tics, which makes a statement about the distribution function F(N) of the sum N,
applies:

N = n1 +n2 +n3 + . . .+nk, (4.28)

where each of the independent variables ni has the distribution function P(n). If the
mean of P(n) is called n and the variance is σ2, then the central-limit theorem states
that in the limit of k → ∞, F(N) is a Gaussian:

F(N) =
1

S
√

2π
exp
[
(N −N)2/2S2] (4.29)

with
N = kn and S2 = k σ2 . (4.30)

This means that the exact shape of P(n) is not needed for the distribution of
avalanches started by a large number of electrons. On the other hand, P(n) is par-
ticularly interesting for drift chambers where individual ionization electrons have to
be detected, as in ring-imaging (RICH) counters.

Single-electron spectra and avalanche fluctuations in proportional counters have
been measured by Hurst et al., using laser resonant ionization spectroscopy (RIS)
[HUR 78] and by Schlumbohm [SCH 58], whose data are discussed later. A review
of single-electron spectra is given by Genz [GEN 73].

Statistical fluctuations of the gain may be influenced by chemical reactions asso-
ciated with the formation of avalanches. Such deterioration of performance occurs
either through deposits on old wires or through the presence of small contaminations
of the gas. A discussion of these effects is given in Sect. 12.6; we refer especially to
Fig. 12.7. Here we assume that the proportional wire is in an unperturbed working
condition.

4.6.1 Distributions of Avalanches in Weak Fields

In this section we investigate the fluctuation of avalanches started by single elec-
trons in weak electric fields, where the assumption holds that the average distance
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between ionizing collisions 1/α is large compared to the distance x0 = Ui/E which
an electron of zero energy has to travel before reaching the ionization potential Ui

of the gas [SNY 47] [WIJ 49] [LEG 55]. In this case the probability for an ionizing
collision in a spatial interval ds is p = αds, independent of the electron’s ‘history’
(see Sect. 4.6.3 for details). We assume a single electron starting at position s = 0
and moving along a coordinate s, where it experiences an electric field E(s) and a
Townsend coefficient α(s). Equation 4.3 tells us that at position s we will find on
average n(s) = exp(

∫ s
0 α(s′)ds′) electrons. Since the multiplication is a statistical

process, the true number will fluctuate around this average, and we are looking for
P(n,s), the probability of finding n electrons at a position s. With the above assump-
tions (p = αds), we have the following probability of finding n electrons at position
s+ds:

P(n,s+ds) = P(n−1,s)(n−1)p(1− p)n−2 +P(n,s)(1− p)n (4.31)

The first term on the right-hand side represents the probability that we find n− 1
electrons at s and exactly one of them duplicates; the second term represents the
probability that there are already n electrons and no duplication takes place. All
other possibilities are of order ds2 and higher. Expanding the above expression for
small values of ds yields the equation

dP(n,s)
ds

= P(n−1,s)(n−1)α(s)−P(n,s)nα(s), (4.32)

with the conditions P(1,0) = 1 and P(n,0) = 0 for n > 1. If we write the equation
in terms of a transformed variable u =

∫ s
0 α(s′)ds′, it assumes the simpler form

dP(n,u)
du

= P(n−1,u)(n−1)−P(n,u)n. (4.33)

For the beginning of the process, we have the equation

dP(1,u)
du

= −P(1,u) and therefore P(1,u) = e−u. (4.34)

The probabilities for n > 0 are calculated by inserting P(1,u) into Eq. (4.32) and
iterating the procedure, which yields

P(n,u) = e−u(1− e−u)n−1. (4.35)

Returning to the variable s, we finally get

P(n,s) =
1

n(s)

(
1− 1

n(s)

)n−1

n(s) = exp(
∫ s

0
α(s′)ds′). (4.36)

We see that the probability distribution depends only on n and not explicitly on
s, which means that the avalanche distribution has the same shape at every stage
of the avalanche and for any coordinate dependence of α . The variance of the
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distribution is

σ(s)2 =
∞

∑
n=1

n2P(n,s)−n(s)2 = n(s)(n(s)−1) . (4.37)

In the limit of n → ∞, which is quite appropriate for avalanches, the expressions
become

P(n,s) =
1

n(s)
e
− n

n(s) σ(s) = n(s). (4.38)

The equations tell us that the avalanche process has an exponential signal dis-
tribution, small signals being most probable, and that the r.m.s. width is equal to
the mean (Yule-Furry law). The pulse-height distribution is purely monotonic and
shows no peak. This is actually confirmed by experiment; see the measurements
described in Sect. 4.6.3 (Fig. 4.16a).

4.6.2 Distributions of Avalanches in Electronegative Gases

Gases containing electronegative components will attach electrons during the de-
velopment of the avalanche and this will affect the gain fluctuations. We therefore
introduce an attachment coefficient η [LEG 61]. Just as the expression αds repre-
sents the probability that an electron experiences an ionizing collision in a spatial
interval ds, forming an electron and a positive ion, the value ηds represents the
probability that an electron attaches in a spatial interval ds, forming a negative ion.
The average number of electrons n(s) and positive ions m(s) is therefore defined by
the relation dn = (α −η)nds and dm = αnds, which, for the average number of
electrons, yields

n(s) = exp
∫ s

0
(α(s′)−η(s′))ds′ (4.39)

The average number of negative ions is then m− n. The value α −η is called the
‘effective’ Townsend coefficient. In order to arrive at the avalanche distribution we
proceed as before. There are four possibilities for n electrons to arrive at position
s + ds: (1) From n electrons, one multiplies and one attaches; (2) from n electrons,
none multiplies and none attaches; (3) from n−1 electrons one multiplies and none
attaches, and (4) from n+1 electrons, none multiplies and one attaches. In first order
of ds this reads as

dP(n,s)
ds

= P(n−1,s)(n−1)α −P(n,s)n(α +η)+P(n+1,s)(n+1)η . (4.40)

Since α(s) and η(s) generally have a different functional dependence on the
electric field and thus on s, we cannot transform the equation into a simple form as
before. We therefore assume α and η to be constant, meaning that the following
solutions are only valid for a constant electric field. According to Legler [LEG 61]
the solution of Eq. (4.40) is
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P(n,s) = k
n(s)−1
n(s)− k

n = 0

= n(s)
(

1− k
n(s)− k

)2(n(s)−1
n(s)− k

)n−1

n > 0

(4.41)

where we have defined k = η/α . The variance of this distribution is σ2 = n(n−
1)(1+ k)/(1− k). For large values of n we find P(0,s) = k, and for n > 0 we find

P(n,s) =
(1− k)2

n(s)
exp

[
−(1− k)

n
n(s)

]
σ2(s) =

1+ k
1− k

n(s)2. (4.42)

The attachment therefore results in the probability k = η/α that one ends up with
zero electrons. Compared to the situation without attachment, the distribution is
still exponential and the r.m.s. is increased by the factor

√
(1+ k)/(1− k). Aver-

aging only over avalanches with n > 0, we find the average number of electrons
n∗(x) = n(x)/(1− k) and a variance of σ(x)2 = n∗(x)2. We conclude that the effect
of attachment increases the avalanche fluctuations and results again in an exponen-
tial signal distribution.

4.6.3 Distributions of Avalanches in Strong Homogeneous Fields

Figure 4.16a-e shows measurements taken in parallel-plate geometry in methylal
vapour for five different fields of increasing strength. For a weak field there is the
purely exponential distribution. As the field is increased a depletion at small num-
bers of ions is visible, becomes more and more pronounced, and produces a clear
peak at high electric fields. All of these curves display an approximate exponential
decrease at the upper end which becomes steeper for higher E.

A quantitative explanation of these measurements was given by Legler [LEG 61]
in terms of the parameter

χ =
α(E)Ui

E
, (4.43)

where E is the electric field, α the first Townsend coefficient, and Ui the ioniza-
tion potential of the gas. Owing to the dependence of α on E (Fig. 4.8), χ usually
increases with increasing E.

The electron that causes an ionizing collision loses at least the energy e0Ui in the
collision, and a new electron with nearly zero energy joins the avalanche. The new
electron has to travel a distance greater than x0 = Ui/E in order to have a non-zero
probability for ionization. In case this distance x0 is small compared to the average

�
Fig. 4.16a-e Distribution of numbers of ions in avalanches started by single electrons as measured
by Schlumbohm [SCH 58] in methylal, in parallel-plate geometry, for various values of χ : (a)
χ = 0.038, (b) χ = 0.044, (c) χ = 0.095, (d) χ = 0.19, superimposed on the theoretical curve by
Legler, dotted (see text), (e) χ = 0.24
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distance 1/α between ionizing collisions, which means that χ = αx0 	 1, the as-
sumption used in the previous sections, is valid and the avalanche distribution has
an exponential form. In case x0 is comparable to 1/α , meaning that χ approaches
1, the avalanche fluctuations will be altered.

Denoting the distance of an electron from the last ionizing collision as ξ and
assuming that the probability of ionization per unit path length depends on ξ as

a(ξ ) = 0 ξ < Ui/E

= a0 ξ ≥Ui/E,
(4.44)

one can calculate avalanche distributions for different values of χ , and these are
plotted in Fig. 4.17. Legler has shown that they are in good agreement with ex-
perimental spectra taken in homogeneous fields, as long as χ (4.43) increases with
increasing E. As an example, he superimposed the calculated distribution curve for
χ = 0.18 on Schlumbohm’s data measured at χ = αUi/E = 0.19 (see Fig. 4.16d).

In this model, the avalanche grows exponentially according to exp(αs), and it
can be shown that α and a0 are connected by

a0 =
α

2e−αx0 −1
.

For the parameter χ = αx0 this defines the condition 0 ≤ χ ≤ log2. Although an
explicit expression for Legler’s probability distribution does not exist, Alkhazov
[ALK 70] was able to calculate all the moments of the distribution for large values
of n and gave a value for the variance of σ2 = n2 f0 with

f0(χ) =
(2e−χ −1)2

4e−χ −2e−2χ −1
≈ (2e−χ −1)2. (4.45)

Fig. 4.17 Distribution functions according to Legler’s model for different values of χ ≡ αx0. The
number ν of electrons is plotted in terms of the average
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For small values of χ we have f0 = 1, reproducing the Yule-Furry law. For increas-
ing values of χ , the value f0 and thus the variance decrease monotonically.

4.6.4 Distributions of Avalanches in Strong Non-uniform Fields

For non-uniform fields, which is the relevant case for wire chambers, the full range
of electric fields must be taken into account and χ and α are functions of the coor-
dinate s. Alkhazov [ALK 70] showed that for large values of n the variance of the
avalanche distribution is given by σ2 = n2 f , where

f =
∫ s

0
f0[χ(s′)]α(s′)exp

(
−
∫ s′

0
α(s′′)ds′′

)
ds′. (4.46)

By also calculating the higher moments of the distribution function Alkhazov
showed that the 1/r dependence of the electric field in the vicinity of a sense wire
together with the ‘typical’ dependence of the Townsend coefficient on the electric
field results in a distribution that closely resembles a Polya distribution, defined for
large n by

P(n) =
1
n

(θ +1)θ+1

Γ (θ +1)

(n
n

)θ
e−(θ+1)n/n σ2 = n2/(θ +1). (4.47)

This was also verified by measurements from Curran [CUR 49]. For θ = 0 the Polya
distribution represents the exponential distribution. For argon and methane, Alk-
hazov calculates values of f = 0.6–0.8 for gas gains in the range 102–105. With
f = 1/(θ + 1) for the Polya distribution we thus have values of θ in the range of
0.25–0.67. Polya functions are depicted in Fig. 4.18.

We conclude this section by noting that the Polya distribution is frequently
also used to describe the avalanche fluctuations in homogeneous fields. Although a
physical justification for this approach was attempted [BYR 62], it was strongly crit-
icized on theoretical grounds [LEG 67] [ALK 70]. It was also shown that the Polya
distribution deviates from the measured spectra for homogeneous fields [LEG 67].
For many practical applications the difference in shape between the curves of
Figs. 4.17 and 4.18 is not relevant.

4.6.5 The Effect of Avalanche Fluctuations on the Wire
Pulse Heights

Let each electron create an avalanche of average size h (a large number), distributed
according to a density function eh(k) which has some variance σ2

e . As an example,
we may imagine eh to be the exponential distribution eh(k) = (1/h)exp(−k/h) that
has σe = h or one of the Polya distributions discussed in Sect. 4.6.4. In any case,
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Fig. 4.18 Polya functions
according to (4.47) for
various values of f . The
number n of electrons is
plotted in terms of the average

n / n

σe will vary together with h, as larger avalanches can be expected to have larger
fluctuations. If there is a fixed number n of electrons to create an avalanche, the
resulting average avalanche size on a proportional wire is nh, the variance being
nσ2

e .
If the number n is not fixed but is itself subject to fluctuations around a mean

m with variance σ2
m, then the mean and the variance of the resulting number of

electrons at the wire are

Ne = mh , (4.48)

σ2 = mσ2
e +h2σ2

m . (4.49)

4.6.6 A Measurement of Avalanche Fluctuations
Using Laser Tracks

A simple method that is close to the practice of recording particle tracks is to com-
pare the pulse heights of many wires that record a laser track. The ionization of the
gas by a beam of pulsed laser light is described in more detail in Chap. 1. The elec-
trons along the beam are created independently; hence the numbers that arrive on
each wire are randomly distributed according to Poisson’s law, with a mean com-
mon to all the wires (provided the light beam is sufficiently uniform). The basic idea
is to observe how much more the pulse heights fluctuate owing to the presence of
the term containing σ2

e in (4.49).
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For the case at hand, in which the number of ionization electrons that start the
avalanche is Poisson-distributed, we have σ2

m = m. The measured pulse height P is
proportional to the avalanche size; let the constant of proportionality be called a – it
could have the dimension volts per electron. Then the mean and the variance of the
pulses created by these electrons are

〈P〉 = aNe = amh , (4.50)

σ2
P = a2σ2 = a2mσ2

e +a2mh2 . (4.51)

In order to determine σ2
e experimentally, we measure the ratio R = σ2

P/〈P〉2 for
various m:

R =
1+σ2

e /h2

m
. (4.52)

This can be achieved by varying the laser intensity using grey filters. The track
from one or several shots of the same intensity that lead to the same m are measured
on a number of wires K (measured pulse heights Pi (i = 1,2, . . . ,K)). The average
pulse height is given by

〈P〉 = ∑
i

Pi

K
(4.53)

and the ratio R by

R = ∑
i

(Pi −〈P〉)2

K〈P〉 . (4.54)

The value of m can be obtained from the pulse height by calibration with a 55Fe
radioactive source. Since the peak of the spectrum is at m = 227 in Ar, a pulse height
P corresponds to

m = 227
P

Ppeak
.

In an experiment using the TPC 90 model of the ALEPH TPC with approxi-
mately 100 wires, the ratio R was measured as a function of 1/m (Fig. 4.19), and a
straight-line fit gave

Fig. 4.19 Square of the measured relative pulse-height variation as a function of the inverse
number of primary electrons
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R = 2.2× 1
m

+0.003 .

The constant term represents an intrinsic pulse-height variation from wire to wire
owing to the apparatus, whereas the measured slope implies a value of

σ2
e = 1.2h2 or σe = 1.1h ,

using (4.52). This determination of σe is roughly 10% accurate.
Within the limits of this simple experiment, we may conclude that the variance

of the single-electron avalanche was equal to that of the Yule–Furry process.
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Chapter 5
Creation of the Signal

The moving charges in a chamber give rise to electrical signals on the electrodes
that can be read out by amplifiers. The electrons created in the avalanche close to the
wire move to the wire surface within a time typically much less than a nanosecond,
resulting in a short signal pulse. The ions created in the avalanche move away from
the wire with a velocity about a factor 1000 smaller, which results in a signal with
a long tail of typically several hundred microseconds duration. The movement of
these charges induces a signal not only on the wire but also on the other electrodes
in the chamber, so for the purpose of coordinate measurements the cathode can
be subdivided into several parts. In this chapter we derive very general theorems
that allow the calculation of signals in wire chambers and present some practical
examples.

5.1 The Principle of Signal Induction by Moving Charges

In order to understand how moving charges give rise to signals on electrodes we
first consider the simple example shown in Fig. 5.1a [JAC 75]. A point charge
q in the presence of a grounded metal plate induces a charge on the metal sur-
face. This surface charge can be calculated by solving the Poisson equation for
the potential φ with a point charge q at z = z0 and the boundary condition that
φ = 0 at z = 0. Gauss’ law tells us that the resulting electric field E = −∇φ
on the metal surface is related to the surface charge density σ by σ(x,y) =
ε0E(x,y,z = 0). The solution for this particular geometry can be found by assum-
ing a mirror charge −q at z = −z0. The electric field on the metal surface is thus
given by

Ez(x,y) = − qz0

2πε0(x2 + y2 + z2
0)

3
2

Ex = Ey = 0, (5.1)

and the surface charge density is σ(x,y) = ε0Ez(x,y). The total charge induced on
the metal plate is therefore

W. Blum et al., Particle Detection with Drift Chambers, 157
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0 
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σ (x,y)

0

q
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Q1(t) Q2(t) Q3(t)
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Fig. 5.1 (a) A point charge q induces a charge density σ(x,y) on the surface of a grounded metal
plate. (b) Segmenting the metal plate results in induced charges Qn on the strips. In case q is
moving, the induced charges on the strips are changing and currents are flowing between the
strips and ground

Q =
∫ ∞

−∞

∫ ∞

−∞
σ(x,y)dxdy = −q, (5.2)

and it is independent of the distance of the charge q from the metal plate. Let us now
imagine the metal plate to be segmented into strips of width w, each of the strips
being grounded (Fig. 5.1b). In order to find the charge induced, e.g., on the central
strip, we have to integrate the surface charge density from Eq. (5.1) over the area of
the strip:

Q1(z0) =
∫ ∞

−∞

∫ w/2

−w/2
σ(x,y)dxdy = −2q

π
arctan

(
w

2z0

)
. (5.3)

This induced charge now depends on the distance z0 of the point charge q from
the metal surface. If the charge is moving towards the metal strip with a velocity v

according to z0(t) = z0−vt, we find a time-dependent-induced charge Q1[z0(t)] and
thus an induced current of

Iind
1 (t) = − d

dt
Q1[z0(t)] = −∂Q1[z0(t)]

∂ z0

dz0(t)
dt

=
4qw

π[4z0(t)2 +w2]
v. (5.4)

We see that the movement of a charge induces a current which flows between the
electrode and ground. This is the principle of signal induction by moving charges.
For more realistic geometries, this method of calculating the signals is the same but
can become quite complex. In the following we derive theorems that allow a simpler
and more intuitive way of calculating signals induced on grounded electrodes. After
that we investigate the signals for the scenario where the electrodes are not grounded
but are connected to amplifiers or interconnected by a general reactive network.

5.2 Capacitance Matrix, Reciprocity Theorem

The capacitance matrix and the reciprocity theorem are the bases for the discussion
of signals induced on metal electrodes. The expression ‘metal’ electrode refers to the
condition that the charges on the electrode can move and that the electrode surface
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is therefore an equipotential one. Setting a set of N metal electrodes to voltages
Vn defines the potential φ(x) and the resulting electric field E(x) = −∇φ(x) in
the chamber volume. The potential is uniquely defined by the conditions that φ(x)
satisfies the Laplace equation and that φ(x) = Vn on the electrode surfaces.

Figure 5.2a shows a set of three metal electrodes. The voltages Vn and charges
Qn on the electrodes are related by the capacitance matrix of the electrode system
[JAC 75]:

Qn =
N

∑
m=1

cnmVm. (5.5)

The capacitance matrix is defined by the electrode geometry, and for the capacitance
matrix elements cnm, the following relations hold:

cnm = cmn, cnm ≤ 0 for n �= m, cnn ≥ 0,
N

∑
m=1

cnm ≥ 0 . (5.6)

These relations are a direct consequence of Green’s second theorem and the fact
that the potential has to satisfy the Laplace equation. A set of different voltages
V n is related to a set of different charges Qn by the same capacitance matrix Qn =
∑cnmV m, so by inverting this relation and multiplying it by Eq. (5.5) we find

N

∑
n=1

QnV n =
N

∑
n=1

QnVn . (5.7)

This relation is called is called the reciprocity theorem and we use it frequently in
the following discussions. Another important relation concerns the sum of all the
charges of an electrode system. Figure 5.2b shows an electrode surrounding three
electrodes. We apply Gauss’ law to the volume between the electrodes, which tells
us that the sum of all charges within this volume is equal to ε0 times the integral of
E(x) over the surface surrounding it. Because ε0

∫
E(x)dA over a metal electrode

is equal to the charge on this electrode, we find that the sum of all charges on the

V1 Q1 V2 Q2

V3 Q3

V4 Q4

q2
q1

b)

V1 Q1 V2 Q2

V3 Q3

a)

Fig. 5.2 (a) The voltages and charges in a system of electrodes are related by the capacitance
matrix cnm. (b) A set of metal electrodes where one electrode encloses the others. The sum of all
charges Qn on the electrodes is equal to the sum of all charges qn in the volume between the
electrodes
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metal electrodes is equal to the sum of all charges in the volume between the elec-
trodes! In the case where there are no charges in the volume between the electrodes,
the sum of the charges Qn on the electrodes must be zero for any set of voltages Vn

applied to them. Thus for the capacitance matrix we find the relation

∑
n

Qn = 0 → ∑
n

∑
m

cnmVm = 0 → ∑
n

cnm = 0, (5.8)

which means that for a set of electrodes that is enclosed by one of them, the sum of
all columns (rows) of the capacitance matrix is equal to zero.

To conclude this section we note that the capacitance matrix elements cnm are
different from the more familiar capacitances Cnm that we know from electric circuit
diagrams. The Cnm are related to the voltage difference between circuit nodes, and
we show later that the cnm and Cnm are related by

Cnn =
N

∑
m=1

cnm, Cnm = −cnm if n �= m . (5.9)

5.3 Signals Induced on Grounded Electrodes, Ramo’s Theorem

We consider a set of three grounded electrodes in the presence of a point charge
Q0 = q at position x as shown in Fig. 5.3a. We assume the point charge Q0 to be
sitting on an (infinitely small) metal electrode, so we have a system of four metal
electrodes. For this setup we have V1 =V2 =V3 = 0 and we want to know the charges
Q1,Q2,Q3 induced by the presence of charge Q0 = q. Equation (5.7) reads

qV 0 +Q1V 1 +Q2V 2 +Q3V 3 = Q0V0 . (5.10)

Choosing another electrostatic state (Fig. 5.3b), where we remove the charge q from
the small electrode (Q0 = 0), we set electrode 1 to voltage Vw (V 1 = Vw) while
keeping the other electrodes grounded (V 2 = V 3 = 0), the above relation becomes

Q1

V1 = 0

Q2

Q3

V2 = 0

V3 = 0

Q0 = q
V0

x

0

0

0

Q1

V1 = Vw

Q2

Q3

V2 = 0

V3 = 0

Q0 = 0 V0 = ψ1(x)

0

0

(a) (b)

Fig. 5.3 (a) The point charge q induces charges Qn on the grounded electrodes. (b) Another set of
voltages and charges which defines the ‘weighting potential’ of the first electrode
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Fig. 5.4 In the case where
the charge q is moving there
are currents flowing between
the electrodes and ground.
The definition of I = −dQ/dt
indicates that the positive
current points away from the
electrode

Q1(t)

q
x(t)

0

0

0

I1(t) I2(t)

I3(t)

Q2(t)

Q3(t)

qV 0 +Q1Vw = 0 → Q1 = −q
V 0

Vw
. (5.11)

V 0 is the potential of the uncharged small electrode for the second electrostatic state,
and since an infinitely small uncharged electrode is equal to having no electrode, V 0

is the potential at point x when the point charge q is removed, electrode 1 is put to
potential Vw, and electrodes 2 and 3 are grounded. We call V 0 = ψ1(x) the weighting
potential of electrode 1, and the induced charge Q1 is given by

Q1 = − q
Vw

ψ1(x) . (5.12)

In the case where the point charge q is moving along a trajectory x(t), as shown
in Fig. 5.4, we find a time-dependent-induced charge on electrode n and therefore a
current of

Iind
n (t) = −dQn(t)

dt
=

q
Vw

∇ψn[x(t)]
dx(t)

dt
= − q

Vw
En[x(t)]v(t). (5.13)

We call En(x) = −∇ψn(x) the weighting field of electrode n, which is Ramo’s
theorem [RAM 39]:

The current induced on a grounded electrode by a point charge q moving along
a trajectory x(t) is Iind

n (t) = −q/Vw En[x(t)]v(t), where En(x) is the electric field
in the case where the charge q is removed, electrode n is set to voltage Vw, and all
other electrodes are grounded.

It must be noted that the sign of the induced current is given not only by the sign
of the charge but also by the orientation of the particle velocity vector with respect
to the direction of the weighting field. The trajectory x(t) is determined by the ‘real’
electric and magnetic fields in the detector together with the drift properties of the
electrons and ions in the detector gas.

5.4 Total Induced Charge and Sum of Induced Signals

If the charge q is moving along a trajectory x(t) from position x0 = x(t0) to position
x1 = x(t1), the total amount of charge Qind

n that flows between electrode n and
ground is given by
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Qind
n =

∫ t1

t0
Iind
n (t)dt = − q

Vw

∫ t1

t0
En[x(t)] ẋ(t)dt =

q
Vw

[ψn(x1)−ψn(x0)] . (5.14)

We find that this induced charge depends only on the end points of the trajectory and
is independent of the specific path. If a pair of charges q,−q is produced at point x0

at t = t0 and q arrives at position x1 while −q arrives at position x2 after a time t1,
the charge induced on electrode n is given by

Qind
n =

∫ t1

t0
Iind
n (t)dt =

q
Vw

[ψn(x1)−ψn(x2)] . (5.15)

If the charge q moves to the surface of electrode n while the charge −q moves to
the surface of some other electrode, the total induced charge on electrode n is equal
to q, since ψn = Vw on electrode n and ψn = 0 on the other electrodes. When both
charges move to other electrodes, the total induced charge on electrode n is zero.
We can therefore conclude:

After all the charges have arrived at the different electrodes, the total charge
induced on electrode n is equal to the charge that has arrived at electrode n.

From this we also conclude that the current signals on electrodes that do not
receive any charge are strictly bipolar.

If we want to know the sum of the signals induced on several electrodes we can
either calculate the weighting fields and induced currents for the individual elec-
trodes and add the currents or we can calculate the weighting field for the entire set
of electrodes by setting all of them to voltage Vw and grounding the remaining ones.
Let us assume the set of electrodes shown in Fig. 5.5, where one electrode encloses
the others. The weighting potential ψtot for the sum of all induced currents is defined
by setting all electrodes to potential Vw. This, however, results in ψtot(x) =Vw in the
entire volume and consequently a weighting field of Etot(x) = 0. We can therefore
conclude:

The sum of all induced currents on grounded electrodes is zero at any time, pro-
vided there is one electrode enclosing all the others.

1

q
x0(t)

0

0

0

I1(t) I2(t)

I3(t)

2

3

0

4

I4(t)

Fig. 5.5 A set of grounded electrodes enclosed by one electrode. The sum of all induced currents
is zero at any given time
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5.5 Induced Signals in a Drift Tube

As an example we calculate the induced signal in a drift tube with (cathode) radius b
and wire radius a (Fig. 5.6). The tube is set to potential −U and the wire is grounded.
This results in an electric field of E(r) = U/(r ln(b/a)), as calculated in Sect. 3.1.1.
We assume a single primary electron-ion pair in the gas volume. The electron moves
to the wire and the ion moves to the tube wall. Close to the wire the electron starts an
avalanche creating Ntot electrons and ions. The Ntot electrons of charge −e0 move to
the wire surface within a time much less than a nanosecond. The Ntot ions of charge
+e0 move away from the wire, but much more slowly, arriving at the tube wall after
a time typically several hundreds of microseconds. As a first step we simply assume
that the Ntot electrons are created at the wire surface and so do not move, while the
Ntot ions move from the wire surface to the tube wall. The velocity of the ions is
given by the mobility μ as v = μE, so with the condition that r(t = 0) = a we find
the ion trajectory to be

dr(t)
dt

= μ
U

r(t) ln(b/a)
→ r(t) = a

√
1+

t
t0

t0 =
a2 ln(b/a)

2μU
(5.16)

The characteristic time t0 is typically one or a few nanoseconds. It takes very much
longer for the ions to arrive at the tube wall r = b; this maximum travel time is
tmax = t0[(b/a)2 −1], typically four to six orders of magnitude larger than t0, in the
hundred microsecond range.

The weighting potential ψ1 and weighting field E1 of the wire are defined by
setting the wire to potential Vw and grounding the tube, which results in

ψ1(r) = −Vw ln(r/b)
ln(b/a)

E1(r) =
Vw

r ln(b/a)
(5.17)

According to Eq. (5.13), the current induced on the wire by the movement of the
Ntot ions is given by

Iind
1 (t) = −Ntote0

Vw
E1[r(t)] ṙ(t) = − Ntote0

2 ln(b/a)
1

t + t0
. (5.18)

The wire signal is negative and has a hyperbolic form with a characteristic time
constant t0, which in practical cases will be a few nanoseconds. The induced charge
at time t is given by

Fig. 5.6 Ions moving from
the wire surface to the tube
wall induce a current signal
on the grounded wire 0

–U

I(t)
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Qind
1 (t) =

∫ t

0
Iind
1 (t ′)dt ′ = − Ntote0

2 ln(b/a)
ln

(
1+

t
t0

)
. (5.19)

Once the ions have arrived at the tube wall the induced charge on the wire is
Qind

1 (tmax) = −Ntote0, which agrees with the statement about the total induced
charge from the previous section. The current induced on the tube (‘the cathode’) is
Iind
2 (t) = −Iind

1 (t) since the tube completely encloses the wire and thus the sum of
the two signals must be zero at any time.

As an illustration, in Fig. 5.7 we plot the time development of a current pulse
described by Eqs. (5.18) and (5.19) using typical parameters for a,b, and t0. One
observes the extremely sharp onset and the extremely long tail characteristic of such
pulses.

In a second step we refine the picture by involving the radial extent of the
avalanche, the electron movement, and the field dependence of the ion mobility.
We use the model from Sect. 4.4.1, where the Townsend coefficient was taken to be
proportional to the electric field (α = (ln2/ΔV )E) and the first multiplication starts
at a minimum field Emin. With Emin = U/(rmin ln(b/a)), the number of electrons
present at distance r is given by

N(r) = exp

(∫ rmin

r
α(r)dr

)
=
( rmin

r

) U ln2
ΔV ln(b/a) (5.20)

The total number of avalanche electrons (the gain) is Ntot = N(a). The number
of electrons created between r and r + dr is n(r)dr = (dN/dr)dr, so the centre of
gravity rcog of the electron avalanche is given by

rcog =
1

Ntot

∫ rmin

a
r n(r)dr = a(1+ ε) ε =

ΔV ln(b/a)
U ln2

(5.21)

Typical operating voltages U of ≈ 2 kV, ΔV values of ≈ 20V , and ln(b/a) values
of ≈ 10 result in a value for ε of the order of 0.1. With traditional wire radii of
a = 10−30 μm we find that the centre of gravity of the electron avalanche is only a
few micrometers above the wire surface.

With such a small distance to travel to their destination, the wire surface, the
electrons can only make a small contribution to the total signal charge. The latter

Fig. 5.7 Current signal
according to (5.18) ( full
line, left-hand scale) for
t0 = 1.25 ns, b/a = 500, and
q = 106 elementary charges.
Time integral (5.19) of this
pulse as a percentage of the
total (broken line, right-hand
scale)
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one is given by Qind
tot = −e0Ntot once all the electrons and ions have arrived on

their respective electrodes (see the previous section). The signal from the electrons
may be calculated using Eq. (5.14), which tells us that a single electron moving
from distance r to the wire surface induces a charge of −(e0/vw)(ψ1(a)−ψ1(r)) =
−e0 ln(r/a)/ ln(b/a). Thus, assuming that all the electrons are moving from rcog to
the wire surface, the fraction of charge induced by the avalanche electrons is given
by

Qind
e

Qind
tot

=
ln(rcog/a)
ln(b/a)

≈ ΔV
U ln2

. (5.22)

For typical values of U and ΔV discussed above, the fraction of charge induced
by the movement of the electrons amounts to 1 or 2% of the total induced charge.
Since the electrons arrive at the wire within a time much shorter than 1 ns, for all
practical purposes we can assume the electron component of the signal to be a delta
current Iind

e (t) = Qind
e δ (t). The ions move from their point of creation to the tube

wall, and we assume here that they all start from rcog. In the high electric fields of
103–104V/(cm Torr) in the vicinity of the wire, the ion velocity is not proportional
to E but rather is related to the field by v = κ

√
E (Sect. 2.2.2). Thus, for the early

part of the ion trajectory we have

dr(t)
dt

= κ

√
U

r(t) ln(b/a)
→ r(t) = a(1+ ε)

√
1+

t
t1

t1 =
2

3κ

√
ln(b/a)

U
a3(1+ ε)3. (5.23)

In practice, t1 is a small factor (say two or three times) larger than t0. It is remarkable
that the functional dependence on t is the same as the one of the simplified case of
Eq. (5.16). The refinements have only changed the numerical values of t0 and a, so
the signal again assumes a hyperbolic form with a characteristic time constant t1.
The sharp onset and the long tail remain as shown in Fig. 5.7.

Since the electric field in the vicinity of the wire of any wire chamber has the
form 1/r, the universal shape of the induced current signal Iind

1 (t) Eq. (5.18) is valid
for wire signals of all wire chamber geometries.

5.6 Signals Induced on Electrodes Connected
with Impedance Elements

In this section we calculate the signals induced by moving charges on electrodes
connected with arbitrary impedance elements. Before doing this, however, we first
investigate the circuit shown in Fig. 5.8, where external current sources In are
impressed on nodes which are connected to impedances Znm. These impedances
represent linear ‘physical’ objects such as resistors, capacitors, and amplifiers. In
the Laplace domain (see Chap. 6), the current Inm flowing from node n to node m
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Fig. 5.8 Circuit diagram
representing three nodes
connected to each other and
ground through impedances
Znm. The In(t) represent
external currents impressed
on the nodes, and the
Vn(t) represent the resulting
voltages

V1(t)
Z12

Z23

0

Z2
Z11

0

Z13

0

Z33

V2(t)

V3(t)

I1(t) I2(t)

I3(t)

through Znm and the current Inn flowing between node n and ground through Znn are
defined by

Inm(s) = [Vn(s)−Vm(s)]/Znm(s) and Inn(s) = Vn(s)/Znn(s) . (5.24)

On every node, the sum of all currents must be zero, which gives

In − Inn − ∑
m�=n

Inm = 0 → In = ∑
m

ynmVm, (5.25)

where we have defined the admittance matrix ynm of the circuit as

ynn = ∑
m

1
Znm

ynm = − 1
Znm

n �= m. (5.26)

The voltages on the nodes, resulting from the impressed currents, are therefore
given by

Vn(s) = ∑
m

znm(s)Im(s) znm(s) = y−1
nm(s). (5.27)

The matrix znm is the inverse of the admittance matrix and is called the impedance
matrix of the circuit.

Up to this point we have understood that there is a linear relationship [Eq. (5.25)
or Eq. (5.27)] between the currents In(t) impressed on the nodes of the network
(Fig. 5.8) and the resulting potentials Vn(t) on the nodes. What we finally want
to determine are the potentials V ind

n (t) induced by a moving charge q between the
electrodes that are part of a network as shown in Fig. 5.9a. In the following we
will find that these voltages are calculated by adding the mutual electrode capaci-
tances to the network from Fig. 5.8 and placing the currents that would be induced
on grounded electrodes as impressed currents to this circuit (Fig. 5.9b). The drift
of charges in gases is slow enough to allow the use of the quasi-electrostatic cal-
culation, meaning that Eq. (5.5) and the reciprocity theorem (5.7) are also valid for
time-dependent charges Qn(t) and voltages Vn(t) at every time t. Following the pro-
cedure of Sect. 5.3, we use a second electrostatic state, where Q0(t) = 0, V 1(t) =Vw

and V 2(t) = V 3(t) = 0, which gives
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Fig. 5.9 (a) The point charge q induces voltages on the electrodes that are connected with
impedance elements. (b) These induced voltages are calculated by adding the mutual
electrode-electrode capacitances Cnm to the equivalent circuit and placing the currents, induced on
the grounded electrodes, as impressed current sources on the nodes

qψ1(x)+Q1 Vw = Q1V ind
1 +Q2V ind

2 +Q3V ind
3 . (5.28)

The charges Qn and voltages V n are related by the capacitance matrix of the
three-electrode system giving Qn = c1nVw. Writing the same relations for the other
electrodes results in

Qn = − q
Vw

ψn(x)+∑
m

cnmV ind
m ,s (5.29)

where Qn, V ind
n , and ψn are the charge, voltage, and weighting potential of electrode

n. If the point charge q moves along the trajectory x(t) we find time-dependent
charges Qn on the electrodes, and their rate of change is

dQn

dt
= −Iind

n (t)+∑
m

cnm
dV ind

m

dt
. (5.30)

The Iind
n (t) are the currents from Eq. (5.13) induced on the electrodes in the case

where they are grounded. The charges Qn can only change due to currents flowing
between the electrodes, i.e., dQn/dt = ∑m Inm + Inn. These currents in turn are given
by the potential differences and connecting impedances, as defined in Eq. (5.24). In
the Laplace domain we therefore have

∑
m

(V ind
m −V ind

n )
Znm

+
V ind

n

Znn
= −Iind

n +∑
m

scnmV ind
m → (5.31)

Iind
n = ∑

m
(scnm + ynm)V ind

m or V ind
n = ∑

m
(sc+ y)−1

nmIind
m , (5.32)

where the admittance matrix ynm is defined in Eq. (5.26). The following is our final
result:
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The voltages V ind
n (t) induced by a moving charge on electrodes connected to

impedances Znm(s) are determined by first using Ramo’s theorem to calculate the
currents induced on the grounded electrodes and placing them as ideal current
sources on an equivalent circuit diagram with admittance matrix scnm + ynm(s)
(Fig. 5.9b).

The additional admittance matrix elements scnm are due to the mutual capaci-
tance between the electrodes. Inverting the relation (5.26) for yc

nm = scnm, we see
that the impedances corresponding to cnm are given by

Zc
nm =

1
sCnm

with Cnn = ∑
m

cnm Cnm = −cnm n �= m (5.33)

The Cnm are the electrode capacitances, which must be distinguished from the capac-
itance matrix cnm in the same way that the impedances Znm must be distinguished
from the impedance matrix znm. The equivalent circuit for Eq. (5.32) is shown in
Fig. 5.9b. To calculate the induced voltages we compute the currents induced on
grounded electrodes with Ramo’s theorem and perform the next step of the calcula-
tion analytically or, e.g., with an analog circuit simulation program.

For the completion of our task we still have to specify the actual trajectory of
the moving charge, and we must find the numerical values of the capacitance matrix
elements. For this, the weighting fields known from Eq. (5.13) turn out to be use-
ful because they have a simple relation to the capacitance matrix as well as to the
trajectory-defining field E(x). If metal electrodes are set to voltages Vn, the poten-
tial ψ(x) is uniquely defined by the requirements that it fulfils the Laplace equation
in the volume between the electrodes and that ψ(x) = Vn on the electrode surfaces.
The potential

ψ(x) = ∑
n

Vn

Vw
ψn(x) (5.34)

satisfies these conditions because the weighting potentials ψn are equal to Vw on
electrode n and zero on the other electrodes, and since such a solution is unique it
is the general solution of this problem. From this we immediately obtain the field
E(x) as a linear superposition of the weighting fields:

E(x) = ∑
n

Vn

Vw
En(x) . (5.35)

The surface charge density on a metal electrode is related to the electric field on
the surface by σ = ε0|E|. The total charge on electrode n is therefore defined by the
integral over the electrode surface An

Qn = ε0

∮
An

E(x)dA = ∑
m

Vm

Vw

∮
An

Em(x)dA = ∑
m

cnmVm. (5.36)

As a result, the capacitance matrix elements are calculated to be

cnm =
ε0

Vw

∮
An

Em(x)dA . (5.37)
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Knowing the weighting fields En(x) is therefore sufficient to calculate the chamber
signals in four steps:

1. Using Eq. (5.35) we find the ‘real’ electric field in the chamber which determines
the particle trajectories.

2. The induced currents on grounded electrodes follow from Ramo’s theorem
[Eq. (5.13)].

3. The capacitance matrix cnm and capacitances Cnm are calculated from Eqs. (5.37)
and (5.33).

4. These capacitance elements are added to the equivalent circuit and the induced
currents are impressed on the nodes as ideal current sources.

The calculation of the weighting fields and capacitance matrix is performed
analytically or with dedicated computer programs. The final step of placing the cur-
rents on the equivalent circuit diagram is usually done by analog circuit simulation
programs.

5.6.1 Application to a Drift Tube and its Circuitry

We now illustrate the above procedure by applying it to the drift tube shown in
Fig. 5.10a. For our example we use values of l = 100cm, tube radius b = 1.5cm,
and wire radius a = 25 μm.

We first have to calculate the electric field in the detector and determine the
ion trajectories, as done in Eq. (5.16). Next we calculate the weighting fields and
the induced current signals using Ramo’s theorem, which was done in Eq. (5.18).
In a third step we calculate the capacitance matrix of the tube using Eq. (5.37).
Electrode 1 (the wire) has an area of A1 = 2aπlr̂ and electrode 2 (tube) has an
area of A2 = −2bπlr̂. With the weighting fields E1 = Vw/r ln(b/a)r̂ (wire) and
E2 = −Vw/r ln(b/a)r̂ (tube) we find

c11 = c22 = −c12 = −c21 =
2πε0l

ln(b/a)
. (5.38)
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Fig. 5.10 (a) Typical setup for a drift tube. The wire is set to voltage U and is decoupled from the
amplifier input by a capacitor C. (b) The signals in the presence of the reactive elements are
calculated by placing the currents Iind

n (t), induced on the grounded electrodes, as ideal current
sources on the equivalent circuit
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The capacitances, calculated by Eq. (5.33), are therefore

C11 = C22 = 0 C12 = C21 =
2πε0l

ln(b/a)
. (5.39)

For the chosen parameters we find C12 = 20 pF. In the final step we impress the
induced currents as ideal current sources on the equivalent circuit of the tube as
shown in Fig. 5.10b. The wire is read out by an amplifier with input resistance
Rin, which we choose to be 50Ω . In the equivalent circuit, the wire and the tube
have become pointlike nodes. This is only admissible if the tube is ‘electrically
short’, i.e., if the shortest wavelength λ = c/ f0 processed by the readout electronics
with bandwidth limit f0 is large compared to the tube length l. For the assumed
parameters this translates into f0 	 300MHz. We use a value of 1.6 MHz in the
following. In a case where l is not much smaller than c/ f0 we would have to consider
the tube to be a transmission line. In practical applications it is not convenient to set
the tube to negative high voltage −U , as shown in Fig. 5.6, but rather to ground the
tube and set the wire to positive voltage U . The signal −Iind

1 induced on the tube can
be neglected because the current is ‘leaving’ to the ground node and is not entering
the amplifier.

Choice of the circuit parameters. The capacitor C decoupling the amplifier
from the potential U must be large compared to C12 so that the current signal goes
into the amplifier instead of flowing into C12. But it must not be so large that the
energy E = CU2/2 it stores would destroy the amplifier in the case of a spark. Let
us take the typical value of 1 nF for C.

The resistor RL connects the wire to the voltage supply. It must be large in com-
parison to the impedance of C and Rin in series so that only a small fraction of
the signal is lost into the power supply. If we want 99% of the bandwidth to find
this impedance sufficiently small, we may evaluate it at 1% of the bandwidth limit
leaving a value of

RL >
1

2π f0 ×0.01
+Rin ≈ 104Ω (5.40)

in our example. In addition, this resistor is a source of thermal current noise which
is proportional to 1/

√
RL, so in this respect as well one chooses the resistor as large

as possible. The upper limit for RL is defined by the maximum voltage drop that
one allows for a given chamber current. With a primary ionization of, e.g., 125 elec-
trons and a gas gain of 5× 105 at a rate of 100 kHz, we find a chamber current
of 1 μA, which leads to a tolerable voltage drop of 1 V for an RL value of 1MΩ .
Values for RL of 100 kΩ to several MΩ are typical; let us make RL = 1MΩ for
definiteness.

The relation between the induced current Iind
1 and amplifier input current IA can

be determined by evaluating the equivalent circuit diagram in Fig. 5.10b. Using the
methods of Chap. 6 we change to the Laplace domain and find

IA(s) =
sRLC

1+ s(RLC +RinC +RLC12)+ s2RinC12RLC
Iind
1 (s) . (5.41)
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With the relative magnitudes of RL,Rin,C, and C12 that we assumed before, the
expression approximates to

IA(s) ≈
(

1
τ2

1
s+1/τ2

)(
s

s+1/τ1

)
Iind
1 (s)

τ1 = RLC = 1ms
τ2 = RinC12 = 1ns

. (5.42)

We can visualize the transfer function by an equivalent block diagram as outlined
in Chap. 6. Converting the current Iind

1 to a voltage pulse, we see that this transfer
function corresponds to an RC integration element with time constant τ2 and a CR
differentiation element with time constant τ1. This is illustrated in Fig. 5.11. The RC
integration with a time constant of τ1 =1 ns will change the ‘infinite’ rise time of the
induced signal to a signal with a rise time of ∼ 1ns, which has very little influence in
the case in which the amplifier rise time is longer than ≈ 10ns. The differentiation
with a time constant of τ2 = 1ms will also have very little influence on the signal
shape within the first several microseconds; it has, however, a profound influence
in the case of high-rate applications. Any voltage signal passing a capacitor will
integrate to zero, i.e.,

∫ ∞
0 IA(t)dt = 0. This means that the signal will slowly approach

zero and then have a very shallow and long undershoot with a timescale of several
times τ1. If the counting rate is < 1/τ1 = 100Hz there is no mutual influence of the
pulses, but as the rate increases, more and more of these undershoots will pile up
and lead to baseline fluctuations. This point will be elaborated in Chap. 6, where
we discuss the amplifier transfer functions which shape the input signal IA so as to
obtain the optimum information from the detector signal.

5.6.2 Alternative Methods for the Calculation of the Signal

To conclude the discussion of signal theorems we point out that there is an alterna-
tive way of calculating the induced voltages for the setup of Fig. 5.9a, which does
not involve the four separate steps outlined earlier. Placing a delta current Iw δ (t) on
electrode n defines a time-dependent weighting field Edyn

n (x, t) in the space between
the electrodes, from which the voltage V ind

n (t) can be calculated by convolution with
the velocity vector of the moving charge [GAT 82]:

V ind
n (t) = − q

Iw

∫ t

0
Edyn

n [x(t ′), t − t ′] ẋ(t ′)dt ′. (5.43)

  k V – V 1/k
Rin

RLC12

C
I1

ind(t) IA(t) = 1/k V2

V1
 = k I1

ind V2 

Fig. 5.11 Equivalent transfer function from the wire signal to the amplifier input
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This theorem can be useful when one studies a detector geometry with a simulation
program that allows the transient analysis of time-dependent electric fields.

There are detectors with electrodes that have only a finite conductivity, such as
resistive plate chambers (RPCs) [SAN 80] or undepleted silicon detectors. In such
cases, which do not normally occur in wire chambers, the theorems discussed in this
chapter are not directly applicable, but have to be generalized. An extension of the
theorems of signal generation including resistive electrodes as well as dissipative
dielectrics has been published elsewhere [RIE 04].

5.7 Signals Induced in Multiwire Chambers

A classical multiwire chamber consists of a plane of anode wires situated between
two parallel cathode planes. Often one of the cathode planes is subdivided into
strips orthogonal to the wires; then the avalanches can be localized in two dimen-
sions by reading out the electrical signals from the wires and the strips [GAT 79].
Such a geometry is depicted further on in Fig. 5.14. In the following we discuss the
main characteristics of the wire and cathode signals using the method outlined in
Sect. 5.1–5.4.

5.7.1 Signals Induced on Wires

The wire radii, typically 10–30 μm, are small compared to the distance between
the wires and the distance between the wire and the cathode of typically a few
millimetres. This fact gives rise to a coaxial electric field close to the wires, as we
show in the following. Setting the wires to potentials Un results in charges qn on the
wires, which are determined by the capacitance matrix through qn = ∑N

m=1 cnm Um.
We combine the two cathode planes into electrode 1 and label the individual wires
as electrodes 2, 3, 4, etc. (cf. Fig. 5.12). We assume the wires to be infinitely long,
so cnm and qn are the capacitance matrix and charge per unit of wire length. The
electric field at a distance r from a line charge q is given by

E(r) =
q

2πε0 r
r̂, (5.44)

cathode plane

anode wires

cathode plane

electrode  ′1′

′2′ ′3′ ′4′

′1′

Fig. 5.12 Electrode arrangement for which the induced currents are calculated in (5.48) to (5.51).
Wire ‘2’ carries the avalanche
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so at a point with distance r1 and r2 to two wires carrying charge q1 and q2, the
electric field is E = 1/(2πε0)([q1/r1]r̂1 + [q2/r2]r̂2). In the vicinity of a wire,
meaning that r1 	 r2, the field is dominated by the charge on this wire as long
as the charges q1 and q2 are of similar magnitude. We can conclude that the elec-
tric field at distance r from wire n is approximately coaxial, and its magnitude
given by

E(r) =
qn

2πε0 r
=

1
2πε0 r

(
N

∑
m=1

cnmUm

)
(5.45)

as long as r is small compared to the distance between the chamber electrodes. Un-
der these circumstances, the trajectory of the avalanche ions is just the same as the
one in the drift tube [Eq. (5.16)], and we have

r(t) = a
√

1+ t/t0
1
t0

=
μ

a2πε0

(
N

∑
m=1

cnmUm

)
. (5.46)

It is interesting to note that it is the bandwidth of the electronics which decides
whether the coaxial approximation (5.45) is adequate. Imagine a fast amplifier (large
bandwidth) for signals only 50 ns long: with typical values of 1 ns for t0 and 15 μm
for the wire radius a, the ions have travelled only a few percent of a typical wire pitch
of 1.5 or 2 mm, namely 0.1 mm in 50 ns – the coaxial approximation is probably
good enough in most circumstances. On the other hand, imagine a slower amplifier
(smaller bandwidth) for signals 1 μs long: with the same typical values the ions
have already travelled a significant fraction of the typical wire pitch, namely 0.5 mm
in 1 μs – the coaxial approximation is probably not good in many circumstances,
and the signal shape begins to depend on the angular distribution of avalanche ions
around the wire.

For the time being we wish to stay in the coaxial approximation (5.45) in order
to compute the signals on the various wires. We consider the situation with a plane
of anode wires, all on the same potential, between two cathode plates, as depicted
in Fig. 5.12.

Knowing the ion trajectory r(t) we need to calculate the weighting fields of
the wires in order to find the induced current signals. The weighting field of the
avalanche wire (electrode ‘2’), where the avalanche takes place, is found by setting
the wire to voltage Vw and grounding all other wires and electrodes. This results in
the charge q2 = c22Vw on this wire, and the magnitude of the weighting field in the
coaxial approximation is

E2(r) =
c22Vw

2πε0 r
. (5.47)

The current induced by Ntot ions of charge e0, moving away from the wire surface,
is therefore

I2(t) = −Ntote0

Vw
E2[r(t)]

dr
dt

= −Ntote0

4πε0

c22

t + t0
. (5.48)

The signal on the avalanche wire is negative because c22 > 0 [cf. Eq. (5.6)].
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The weighting field of the closest neighbour (electrode ‘3’) is given by setting
wire ‘3’ to potential Vw and grounding all other wires. This results in a charge of
q3 = c23Vw on the avalanche wire and the signal on wire ‘3’ is therefore

I3(t) = −Ntote0

4πε0

c23

t + t0
. (5.49)

The ‘cross-induced’ signal has the same shape as the signal on the avalanche wire
and because c2n < 0,n �= 2, it is positive. The other wires have the same signal
polarity and shape, with relative amplitudes c24,c25, etc. We can express the relative
signal amplitudes by the more familiar capacitances Cnm and find

In(t)
I1(t)

=
c2n

c22
= − C1n

∑N
m=1 C2m

. (5.50)

The amplitude of the ‘cross-induced’ signal from the avalanche wire to wire n is
therefore given by the mutual capacitance between the avalanche wire and wire n
divided by the sum of all mutual capacitances of the avalanche wire to the other
electrodes.

We have to note that the capacitive coupling between wires causes a signal of
the same polarity on the neighbouring wires, which can be seen, e.g., by injecting a
wire signal with a pulse generator. During the early days of wire chamber develop-
ment one feared that the resolution of multiwire chambers was limited owing to this
capacitive coupling, which increases as the wire spacing is reduced. The opposite
polarity of the signal induced by the avalanche is, however, hiding this capacitive
crosstalk, which makes it ‘a simple matter to localize the wire which is the seed of
the avalanche, whatever the distance between the wires’ [CHA 92].

The sum of all wire signals is given by

Iw(t) =
N

∑
n=2

In(t) = −Ntote0

4πε0

1
t + t0

N

∑
n=2

c1n = −Ntote0

4πε0

C12

t + t0
. (5.51)

Here we have used the relation C12 = −c12 and the fact that the two cathode
planes completely enclose the wires and the sum of all capacitance matrix elements
∑N

m=1 cnm is zero. The sum of all wire signals thus has negative polarity. If all the
wires are set to the same voltage U , the characteristic time constant t0 from Eq.
(5.46) assumes the form

1
t0

=
μ

a2πε0

(
U

N

∑
m=2

cnm

)
=

μU C12

a2πε0
. (5.52)

For a comparison with the simple drift tube with wire radius a and tube radius
b, we remember that the wire signal and wire capacitance per unit length C′

12 were
calculated [Eqs. (5.16), (5.18), (5.39)] to be

I(t) = − Ntote0

2 ln(b/a)
1

t + t0

1
t0

=
2μU

a2 ln(b/a)
C′

12 =
2πε0

ln(b/a)
. (5.53)
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If we express ln(b/a) by the capacitance per unit length C′
12 the expression for the

wire signal in the drift tube is equivalent to the expression for the summed wire
signal in the MWPC. Therefore one can define the so called ‘equivalent cathode
radius’ for an MWPC as

beq = aexp

(
2πε0

C12

)
= aexp

(
55.6 pF/m

C′
12

)
. (5.54)

We can therefore conclude that while the avalanche ions are moving in the coax-
ial region of the wire, all signals in the wire chamber have the same shape, namely
hyperbolic proportional to 1/(t +t0) with the characteristic time constant t0. The rel-
ative amplitudes of the signals are determined by the capacitance matrix elements,
and the signal on the avalanche wire has negative polarity while all other signals
have positive polarity. For wire chambers where all wires are set to the same voltage
U , the summed wire signal is equivalent to the wire signal in a drift tube, and we
can define an equivalent cathode radius beq for the wire chamber.

Finally, let us picture what we can expect beyond the coaxial approximation.
Once the avalanche ions are at a distance from the wire which is comparable to
the other chamber dimensions, the capacitance matrix elements are not sufficient to
determine the signals, the signal shapes differ, and the weighting fields for each wire
must be considered. The curves in Fig. 5.13 are the results of a numerical calculation
for a model chamber like the one in Fig. 5.12 with anode wires spaced 2.5 mm and
an anode-cathode distance of 5 mm. The weighting fields of the different electrodes
at the point of the travelling ions are represented as a function of the distance of the
ions from the wire that carries the avalanche. The ratios between the weighting fields
of different electrodes may be taken for the respective signal ratios. One observes
that the signal on the neighbouring wire ‘3’ (crosstalk) depends very much more on
the angular distribution of avalanches around their wire than is the case for the main
signal on electrode ‘2’.

Fig. 5.13 Weighting fields
of different electrodes as a
function of the distance from
the centre of the avalanche
wire (‘2’) to the travelling
ions. The electrode numbers
characterize the source of the
weighting fields, the symbol
‘Σ ’ referring to the sum of
all the wires. The various
branches in each group of
curves refer to different
directions the avalanche
might have around its wire:
perpendicular up and down
respective to the wire plane
and in the wire plane
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5.7.2 Signals Induced on Cathode Strips and Pads

When the wires are enclosed by the two cathode planes, the sum of all chamber sig-
nals is zero at any time and the cathode signal Ic(t) is equal to the negative summed
wire signal −Iw(t). In our example, the cathodes are symmetrically placed with
respect to the wire plane, so the signal on a single cathode plane in the coaxial
approximation is

Ic1(t) =
1
2

Ic(t) = −1
2

Iw(t) =
1
2

Ntote0

4πε0

C12

t + t0
. (5.55)

The avalanche can be localized in the direction perpendicular to the sense wire when
subdividing the cathode into separate strips or pads, as indicated in Fig. 5.14. The
weighting field of a cathode strip is calculated by setting the strip to potential Vw

while grounding all other strips and wires. This method is used in [MAT 84a] to ar-
rive at the exact expression for the weighting field and induced signal. For practical
purposes a few simplifications can be introduced [GAT 79][MAT 84b]. The signal
on a cathode strip is determined by first calculating the signal on a strip of infinites-
imal width, which is then integrated over the strip width w. This procedure defines
a so-called cathode charge distribution Γ (λ ) through

dIc1(t,λ ) = Ic(t)Γ (λ )dλ
∫ ∞

−∞
Γ (λ )dλ =

1
2
, (5.56)

where λ = x/h is the distance of the infinitesimal strip from the avalanche posi-
tion. The distribution Γ (λ ) can be calculated by investigating the weighting field
of an infinitesimal cathode strip. A single-parameter semi-empirical expression for
Γ (λ ) was given by Gatti et al. [GAT 79] and discussed by Mathieson and Gordon
[MAT 84b]:

Γ (λ ) = K1
1− tanh2 K2λ

1+K3 tanh2 K2λ
. (5.57)

Here the parameters K1 and K2 are uniquely defined by K3, which depends on the
chamber geometry as shown in Fig. 5.15:

Fig. 5.14 A row of wires
centred between two cathode
planes. By segmenting the
cathode into strips, the
position of the avalanche
along the wire direction can
be determined. The wire pitch
s, the strip width w = 2a,
and the distance h between
anode and cathode planes are
indicated
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Γ(λ)

λ

Gauss

Gatti

0

Fig. 5.15 (a) Values of the parameter K3 as a function of chamber geometrical parameters h/s
and a/s [MAT 84b]. (b) Cathode charge distribution Γ (λ ) according to Gatti for h/s = 2 and
a/s = 5.25×10−3 together with a Gaussian that has the same area and the same FWHM

K1 =
K2

√
K3

4atan
√

K3
K2 =

π
2

(
1−

√
K3

2

)
. (5.58)

Γ (λ ) represents the charge distribution on one of the cathode planes originating
from a single avalanche. We take it to be independent of direction in that plane,
the variable λ = x/h representing one coordinate in that plane, normalized to the
anode-cathode distance h. The other coordinate, at right angles to x, has already
been integrated over, following the idea of a cathode segmented into strips. One
of the two curves in Fig. 5.15b is Eq. (5.57) with a choice of K3 indicated in the
caption. The other is a Gaussian for comparison, with the same area and the same
width. Gatti’s curve has a longer tail at large |λ |. The FWHM of the distribution can
be expressed as

FWHM
h

=
4arctanh(1/

√
2+K3)

π(1−0.5
√

K3)
. (5.59)

Expression (5.57) is approximate in the sense that it neglects any influence of the
avalanche position around the wire if the avalanche develops on one side. But this
is not relevant unless electric signals are recorded that are so long that the ions have
moved beyond a few wire radii. In practical measurements of particle tracks there
are many avalanches that contribute to an electric signal. These are spread out along
the track, by diffusion and other effects (cf. Chap. 2). The average formula (5.57) is
then quite adequate to generate, perhaps in a simulation program, the true charge by
superposition of many Γ (λ i) at the avalanche positions λ i.

Precision measurements of charge distributions for different avalanche positions
around the wire were reported by Gordon and Mathieson [MAT 84a].

Varying the ratio of cathode separation to wire pitch h/s from 0.1 to ∞, the para-
meter K3 assumes values between 0.1 and 1, which means that the FWHM assumes
values between 2.8h and 2.4h. For a strip of finite width w centred at position λ , we
get the signal I(t,λ ,w) by integrating Eq. (5.56), and we find
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I(t,λ ,w) =
∫ λ+w/2

λ−w/2
dIc1(t,λ ′)dλ ′ = Ic(t)

∫ λ+w/2

λ−w/2
Γ (λ ′)dλ ′ = Ic(t)P0(λ ), (5.60)

where

P0(λ )=
K1

K2
√

K3

(
arctan

[√
K3 tanhK2(λ +

w
2

)
]
− arctan

[√
K3 tanhK2(λ − w

2
)
])

.

(5.61)
We call P0(λ ) the pad response function. The fact that the signal on the entire

cathode plane is equal to half the total cathode signal is verified by evaluating

lim
w→∞

P0(λ ) =
1
2
. (5.62)

The pad response function depends on the strip width w. Figure 5.16 shows some
examples calculated for various w’s using the charge distribution displayed in
Fig. 5.15. The pad response function determines what fraction of the total cath-
ode signal is induced in the strip as a function of the distance between the centre
of the strip and the avalanche position (measured in the cathode plane). Equation
(5.62) implies that this fraction would reach 50% for an infinitely wide strip. For
narrower strips it is still quite large, the example of Fig. 5.16 shows that 22% is
collected when the avalanche is at the centre of a strip with width 0.75h and 11%
if it is over the centre of the neighbouring strip. For the measurement of tracks an
effective pad response function Pe f f (λ ) is applicable, which results from folding in
the distribution of the positions of avalanches that contribute to the cathode strip
signal. This Pe f f (λ ) can either be constructed using the methods described above

Fig. 5.16 Pad response
functions for four different
strip widths w in units of the
anode cathode distance h.
As w decreases, the curves
become smaller and thinner

 λs

P0(λs)

0
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or be measured by fitting tracks. Often a simple superposition of Gauss curves is
sufficient.

The measurement of the coordinate of the avalanche is made by interpolating
the signals recorded on adjacent cathode strips with the help of the effective pad
response function Pe f f (λ ). The strip width w and the cathode distance h have to be
chosen such that the typical pulse height induced on two or three adjacent strips falls
into the dynamic range of the readout electronics. If the resolution limit for position
determination along the wire is given by the electronics pulse-height measurement, a
strip width near the cathode-anode distance (w≈ h) gives the best position resolution
[GAT 79]. When the coordinate of the avalanche is exactly in between two strips, it
induces two equal signals on them. If the avalanche is produced in correspondence
with the centre of one strip, it induces a large signal on it and two smaller signals on
the two adjacent strips. Typically one records two signals in the first case and three
in the second.

Measuring the signal I1(t) and I2(t) on two adjacent cathode strips of pitch w we
have the relations I1(t)/I2(t) = P0(λ )/P0(λ −w), which can be inverted to yield the
avalanche position λ . Measuring the signals on three adjacent strips over-constrains
the equation and leads to a further improvement of the position resolution. With

I2(t)
I1(t)

= p1 =
P0(λ1)

P0(λ1 −w)
I2(t)
I3(t)

= p2 =
P0(λ2)

P0(λ2 +w)
(5.63)

we find λ1 and λ2 which determines the same avalanche position. Since the mea-
surement error is roughly inversely proportional to the recorded pulse height on the
outer strips, one may use the relative weights of p2

1 and p2
2 to estimate λ from the

two independent measurements

λ =
1

p2
1 + p2

2

(p2
1 λ1 + p2

2 λ2) (5.64)

In order to achieve a precise signal measurement, the readout electronics will use
a signal processing filter that optimizes the signal-to-noise ratio. Such a processing
chain leaves the ratio of signals on neighbouring strips unchanged as long as it is
the same for the strips involved.

Another common way of determining the avalanche position is to simply deter-
mine the centre of gravity of the strip charges or to apply a Gaussian type fit to the
measured charges [END 81]. All of these methods introduce systematic errors as a
function of the distance of the track from the strip centre (‘differential nonlinearity’),
but these can be corrected with suitable models.
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Chapter 6
Electronics for Drift Chambers

The signals induced on the drift chamber electrodes must be processed by appro-
priate readout electronics. The design and specification of the electronic circuits
depend strongly on the detector application. For timing purposes one typically wants
fast amplifiers to reduce time walk effects. For applications where charge measure-
ment is required one prefers long integration times (slower amplifiers) in order to
integrate a large fraction of the detector signal. For high-rate applications, signal
tail cancellation and baseline restoration are important issues in order to avoid sig-
nal pileup and baseline fluctuations. The electronics noise level must be considered
as well as it determines the required chamber gas gain for the desired signal-to-noise
ratio.

The art and science of electronics is a universe of its own, and we cannot develop
the contents of this chapter from the basic principles as we have undertaken to do in
the other chapters of this book. Here it is our task to collect the concepts that allow
us to arrive at the electronics specifications for particular detector applications. The
numerous ways of realizing the actual circuits are also not part of this book. The
reader interested in a more detailed treatment of electronic signal processing may
want to consult the textbooks of Oppenheim and Willsky [OPP 97] (mathematical
tools), Nahvi and Edminster [NAH 03], Horowitz and Hill [HOR 89] (basic intro-
duction to electronic circuits), Nicholson [NIC 73] (nuclear electronics), Radeka
[RAD 88] (low noise techniques), and Rehak [REH 83] and Gatti [GAT 85] (signal
processing for particle detectors).

The front-end electronics of wire chambers, or at least their first stages, are typ-
ically linear signal processing devices. A linear signal processing device has the
property that a given input pulse shape Iin(t) results in an output pulse shape Vout(t)
which is independent of the signal amplitude, i.e., Vout [c× Iin(t)] = c×Vout [Iin(t)]
for any value of the constant c.

There are important advantages of linearity: in position-sensitive wire cham-
bers with cathode segmentation for cathode charge interpolation (Sect. 5.7.2), the
track position is determined by the ratio of the charges induced on neighbouring
strips or pads. If the readout electronics were nonlinear, one would have to apply
a pulse-height-dependent correction of the position, which is undesirable. Another

W. Blum et al., Particle Detection with Drift Chambers, 181
doi: 10.1007/978-3-540-76684-1 6, c© Springer-Verlag Berlin Heidelberg 2008
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compelling reason for linearity is related to signal shaping. The long 1/(t + t0) tail
of the wire chamber signal leads to signal pileup and hence to rate limitations. For
this reason one introduces filters (shapers) which reduce the pulse width. If the am-
plifier stages preceding the shaper are nonlinear, the signal shapes arriving at the
shaper vary according to their amplitude, which makes the shaper circuit with fixed
parameters inefficient. For linear electronics the shaper just has to be matched to the
input pulse shape, i.e., to the parameter t0 for the given wire chamber geometry.

An amplifier is traditionally considered a device that produces an amplified copy
of the input signal. For example, the output of an ideal voltage amplifier for an
input voltage signal vin(t) is vout(t) = G× vin(t), where G is the (dimensionless)
voltage gain of the amplifier. Figure 6.1a shows how a voltage signal induced on a
detector electrode is read out by a voltage amplifier. In order to create an exact copy
of the induced voltage signal the input impedance of the voltage amplifier must be
infinite, because for finite input impedance we would find a current flowing into the
amplifier, which would change the voltage V3(t).

Figure 6.1b shows a set of grounded electrodes where the moving charge in-
duces currents. Such a current can be read out by an ideal current-sensitive amplifier,
which produces an output voltage signal v(t) = ki3(t). The ‘gain’ k has the dimen-
sion of Ω and it would be more precise to call this device a current-to-voltage
converter. The input impedance of the device must be zero so that the electrodes
stay at ground potential.

Figure 6.2 shows the realization of voltage and current amplifiers using an op-
erational amplifier, which is a device with very high voltage gain, very high input
impedance, and very high bandwidth, ideally all being infinite. The voltage am-
plifier shown in Fig. 6.2a has a gain of G = V2/V1 = 1 + R2/R1 and infinite input
impedance. The output voltage V2 is independent of the load RL. The current ampli-
fier shown in Fig. 6.2b has a gain of k =V2/I1 =−R and zero input impedance. Also
for this device the output voltage V2 is independent of the load RL. If we were just
interested in a copy of the induced signal, the electronics chapter of this book would
end at this point. In practice the induced signal must be processed and transformed
by several filters in order to arrive at a useful signal-to-noise ratio, pulse width,
and frequency spectrum of the output signal, because these quantities determine the
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Fig. 6.1 (a) An ideal voltage amplifier with gain G and infinite input impedance reading the voltage
signal induced on the detector electrode. (b) An ideal current amplifier with conversion factor k
and input impedance zero reading the current signal induced on the detector electrode
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Fig. 6.2 Realization of a voltage amplifier (a) and a current amplifier (b) by using an operational
amplifier

charge measurement accuracy, the rate capability, and the crosstalk behaviour of the
detector.

The signal filtering is also called signal shaping, and the readout electronics are
sometimes separated into an ‘amplifier’ and a ‘shaper’. In the following chapters
we only use the word ‘amplifier’ for the entire linear signal processing chain of the
readout electronics.

We conclude this introduction by noting that the vocabulary and tradition in the
field of detector electronics is somewhat different from the sometimes more familiar
field of radio and telecommunication electronics. Whereas the latter is formulated
almost exclusively in the frequency domain, detector signals are mostly discussed
in the time domain. For detector signals we are interested in pulse height, signal-
to-noise ratio, pulse width, signal pileup, and rate capability. All these numbers
are associated with the amplitude and time dependence of detector signals. In the
frequency domain the effect of a filter applied to a signal is simply the product of the
signal and the filter transfer function. The equivalent operation in the time domain is
the convolution of the input signal with the amplifier delta response. As we discuss
mostly time domain signals we make frequent use of the convolution integral.

Before describing the readout electronics we review the necessary vocabulary
and mathematical tools required for analysis of linear signal processing devices.

6.1 Linear Signal Processing

The Laplace and Fourier transformations of time domain signals are essential tools
for electrical circuit analysis. The following section summarizes the principal re-
lationships and examples that are used for later discussion of the actual front-end
electronics. Details of these techniques can be found in numerous textbooks; we
follow the nomenclature and definitions given in [OPP 97].

6.1.1 Laplace and Fourier Transforms

The Laplace transform of a time-dependent function f (t) is defined by

L [ f (t)] = F(s) =
∫ ∞

−∞
f (t)e−stdt, (6.1)
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where s is a complex number with real part σ and an imaginary part ω: s = σ + iω .
This definition is called the ‘bilateral’ Laplace transform because the integration ex-
tends from −∞ to ∞. In the case where f (t) = 0 for t < 0 the transform is equal to the
unilateral Laplace transform, which has a lower integration limit of 0. While F(s)
has no direct physical interpretation, the Fourier transform of the signal, defined by

F [ f (t)] =
∫ ∞

−∞
f (t)e−iωtdt = F(iω) ω = 2π f , (6.2)

expresses the signal as a superposition of sinusoidal waves of frequency f with am-
plitudes |F(iω)| and relative phases arg[F(iω)]. The Fourier transform is a special
case of the bilateral Laplace transform with σ = 0. The inverse transforms are

f (t) =
1

2πi

∫ σ+i∞

σ−i∞
F(s)est ds f (t) =

1
2π

∫ ∞

−∞
F(iω)eiωt dω. (6.3)

The transformations of the most common functions are tabulated in standard text-
books. For the Laplace and Fourier transforms, the following relations hold (proofs
can be found in [OPP 97]):

(a) Addition (b) Convolution
L [a f (t)+bg(t)] = aF(s)+bG(s) L

[∫ ∞
−∞ f (t − t ′)g(t ′)dt ′

]
= F(s)G(s)

(c) Time differentiation (d) Time integration

L
[

f (n)(t)
]

= snF(s) L
[∫ t

−∞ f (t ′)dt ′
]
= 1

s F(s)

(e) Time shift (f) Time scaling
L [ f (t − t0)] = F(s)e−st0 L [ f (at)] = 1

a F( s
a )

(g) Damping (h) Multiplication
L [e−s0t f (t)] = F(s+ s0) L [tn f (t)] = (−1)nF(n)(s)

(i) Initial value if f (t) = 0 for t < 0 (j) Final value
f (0+) = lim

s→∞
sF(s) f (∞) = lim

s→0
sF(s)

(k) Parseval’s theorem∫ ∞
−∞ f (t)2dt =

∫ ∞
−∞ |F(i2π f )|2d f = 2

∫ ∞
0 |F(i2π f )|2d f

(6.4)
The usefulness of these transformations for electrical circuit analysis is illustrated

by the following example. The voltage vR(t) across a resistor R for an impressed cur-
rent i(t) is given by Ohm’s law as vR(t) = Ri(t). The voltage across a capacitor C for
an impressed current i(t) is vC(t) = 1/C

∫
i(t)dt. The voltage across an inductance

L for an impressed current i(t) is given by vL(t) = Ldi(t)/dt. Voltages and currents
in a circuit containing R,L, and C elements are determined by applying Kirchhoff’s
laws, which state that the sum of voltages in every loop must be zero and the sum
of the currents on every node must be zero. This analysis therefore leads to a set of
linear differential equations for the currents and voltages in the circuit.
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Writing the above relations in the Laplace domain, we find VR(s) = RI(s),
VC(s) = I(s)/sC, and VL(s) = sLI(s), and the circuit relations become algebraic
equations. Instead of having to solve a set of coupled differential equations in the
time domain we just have to solve a set of linear algebraic equations in the Laplace
domain! In addition, owing to the theorems stated above, many signal manipulations
are strongly simplified when working in the Laplace domain.

Finally we define the impedance Z(s) of a circuit element as Z(s) = V (s)/I(s).
We find the impedance of ZC(s) = 1/sC for a capacitor and ZL(s) = sL for an in-
ductor. In analogy to the resistance R1 + R2 of two resistors switched in series, the
total impedance of two impedances Z1 and Z2 switched in series is Z1 + Z2. Like-
wise, the parallel application of the impedances gives a total impedance of Z1Z2/
(Z1 +Z2).

6.1.2 Transfer Functions, Poles and Zeros, Delta Response

We now want to read out the chamber output signal i(t) with a general linear signal
processing device. Such a signal is, e.g., the current signal i(t) of the drift tube
indicated in Fig. 5.10. A linear device is defined by the following property: if the
input signals i1(t) and i2(t) result in output signals v1(t) and v2(t), the input signal
i(t) = c1i1(t)+ c2i2(t) will result in the output signal v(t) = c1v1(t)+ c2v2(t).

The input and output signals of a linear, time-invariant, and causal device are
related by a differential equation of the following form:

a0 v(t)+a1
dv(t)

dt
+ . . .+am

dmv(t)
dtm = b0 i(t)+b1

di(t)
dt

+ . . .+bn
dni(t)

dtn , (6.5)

where the coefficients a and b are independent of time. The term ‘time-invariant’
describes the fact that the relation between input and output signals is independent
of time. For a ‘causal’ system the output signal v(t) is zero as long as the input
signal i(t) is zero.

Performing the Laplace transform and using Eq. (6.4c) transforms this equation
into an algebraic equation with the solution

V (s) =
b0 +b1s+ . . .+bnsn

a0 +a1s+ . . .+amsm I(s) = W (s)I(s), (6.6)

where we have defined L [i(t)] = I(s) and L [v(t)] = V (s). The function W (s) is
called the transfer function of the system and we see that the transfer function of a
linear time-invariant system can be expressed by the ratio of two polynomials in the
Laplace domain.

Setting s = iω yields the transfer function in the Fourier domain and the relation-
ship between input and output signals is

V (iω) = W (iω) I(iω). (6.7)
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Separating the signal I and the transfer function W into the absolute value and the
phase indicates how the frequencies contained in the input signal are separately
transformed in order to yield the output signal:

V (iω) = |I(iω)||W (iω)|exp [iarg[I(iω)]+ iarg[W (iω)]] . (6.8)

The sinusoidal components of the input signal I are scaled by |W | and phase shifted
by arg[W ]. For very high frequencies the transfer function from Eq. (6.6) behaves as

|W (iω)| =∝ ωn−m. (6.9)

A system where n > m is non-physical because it would result in infinite amplifi-
cation at infinite frequency. We can therefore state that for the transfer function of
a realistic linear device we have n ≤ m. An nth-order polynomial has n (real and
complex) roots, so the transfer function W (s) can be expressed as

W (s) = A
(s− z1)(s− z2) . . .(s− zn)

(s− p1)(s− p2) . . .(s− pm)
. (6.10)

The roots s = z1,z2 . . . are the zeros of W (s) and s = p1, p2 . . . are the poles of W (s).
In general, zi and pi are complex numbers, and some of the roots may be repeated.
In the Laplace domain, the transfer function of a linear signal processing device can
therefore be fully described by its poles, its zeros, and a constant gain factor A.

A unit input signal I(s) = 1 will result in the output signal V (s) = W (s). Re-
turning to the time domain we have L −1 [1] = δ (t) and L −1 [W (s)] = w(t). The
inverse Laplace transform of the transfer function is thus the output signal for a unit
delta input signal, which we call the delta response of the system. Since, according
to Eq. (6.4b), a multiplication in the Laplace domain corresponds to a convolution
in the time domain, in the latter Eq. (6.6) reads as

v(t) =
∫ ∞

−∞
w(t − t ′)i(t ′)dt ′. (6.11)

If w(t) and i(t) are causal, meaning that w(t) = i(t) = 0 for t < 0, the convolution
integral reads as

v(t) =
∫ t

0
w(t − t ′)i(t ′)dt ′. (6.12)

The transfer function W (s) and the delta response w(t) are two equivalent ways of
describing a linear system, and this is symbolized in Fig. 6.3. Using partial fraction
expansion, we can write the transfer function W (s) in Eq. (6.10) with m ≥ n as a
sum of terms with the form 1/(s− pi)ki , where ki ≥ 0 are integers and the poles
are complex numbers (pi = ai + ibi). The delta response w(t) of a linear system
therefore becomes a sum of terms with the form

L −1
[

1
(s− pi)ki

]
=

tki−1

(ki −1)!
eait [cos(bit)+ isin(bit)] Θ(t) ki ≥ 1. (6.13)
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i(t)

I(s)

w(t)

W(s)

o(t) = ∫w(t-t')i(t')dt'

O(s) = W(s) I(s)

Fig. 6.3 A linear device is characterized by the transfer function W (s) in the Laplace domain or
the delta response w(t) = L −1 [W (s)] in the time domain

The step function Θ(t) is defined in Eq. (6.16). For k = 0 we have L −1 [1] = δ (t).
If ai > 0, the delta response tends to infinity for t → ∞, so the criterion for stability
of a linear system is given by the requirement that the real parts of all poles of W (s)
must be negative. In the case where ai + ibi is a root of a polynomial, the complex
conjugate ai − ibi is also a root of the polynomial. Thus the terms in Eq. (6.13)
always appear in complex conjugate pairs, the imaginary part is cancelled, and the
delta response is always real.

Figure 6.4 shows an example of the terms from Eq. (6.13) for k = 2,4,6 and bi =
0. In this book we mainly discuss transfer functions with real poles. The imaginary
parts of poles arise from inductances. (As these cannot be implemented physically as
coils in integrated devices, one would make them feedback loops using operational
amplifiers).

6.1.3 CR, RC, Pole-zero and Zero-pole Filters

In this section we discuss four elementary filters that illustrate the formalism out-
lined in the previous section. They are also elementary in the sense that by cascading
these four filter types we can construct any desired transfer function W (s) with real
poles. If we wanted to construct the most general transfer function W (s) also in-
cluding complex poles we would have to add a few elementary circuits containing
an inductance L. The CR and RC filters are shown in Fig. 6.5. The output voltages
of the two filters for an input voltage signal V (s) = L [v(t)] are

Fig. 6.4 The delta response
w(t) of a linear network with
real poles consists of the sum
of shapes indicated in this
figure. In the case where
W (s) has complex poles we
find terms with an oscillatory
behaviour of frequency bi/2π
and a damping factor of
exp(−ait) 1 2 3 4 5
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0.4

0.6
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k = 6
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k = 4
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R

R C

C

v(t)v(t) v1(t) v2(t)

Fig. 6.5 A CR (left) and RC (right) filter consisting of a resistor R and a capacitor C. A voltage
signal v(t) is transformed into the output voltage signals v1(t) and v2(t)

V1(s) =
sRC

1+ sRC
V (s) =

sτ
1+ sτ

V (s) = WCR(s)V (s) (6.14)

V2(s) =
1

1+ sRC
V (s) =

1
1+ sτ

V (s) = WRC(s)V (s). (6.15)

The value τ = RC is the characteristic time constant of the filters. In the following
we frequently use the step function Θ(t), which is defined by

v(t) = Θ(t) =
{

0 t ≤ 0
1 t > 0

V (s) = L [v(t)] =
1
s
. (6.16)

Applying this voltage step of amplitude V0 at the inputs of the two filters yields the
output signals

V1(s) =
V0 τ

1+ sτ
V2(s) =

V0

s(1+ sτ)
. (6.17)

Returning to the time domain, we find

v1(t) = V0 e−
t
τ Θ(t) v2(t) = V0 (1− e−

t
τ )Θ(t) (6.18)

The two responses are shown in Fig. 6.6. The output of the CR filter decays exponen-
tially from the value V0 to 0, while the output of the RC filter increases exponentially
from 0 to V0. We can also calculate the output signal in the time domain by finding
the delta response of the circuit w(t) = L −1 [W (s)] and convoluting it with the input
signal:

wCR(t) = δ (t)+
1
τ

e−
t
τ Θ(t) wRC(t) =

1
τ

e−
t
τ Θ(t) (6.19)
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Fig. 6.6 Output of the CR and RC filter for a voltage step function input
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v1(t) =
∫ t

0

(
δ (t − t ′)− 1

τ
e−

t−t′
τ Θ(t − t ′)

)
V0 Θ(t ′)dt ′= V0 e−

t
τ Θ(t)

v2(t) =
∫ t

0

(
1
τ

e−
t−t′

τ Θ(t − t ′)
)

V0 Θ(t ′)dt ′ = V0 (1− e−
t
τ )Θ(t) . (6.20)

We find the same result as before. If we replace s by iω we have the transfer function
in the Fourier (frequency) domain:

WCR(iω) =
iω τ

1+ iωτ
=

ωτ√
1+ω2τ2

exp [i arctan1/ωτ],

WRC(iω) =
1

1+ iωτ
=

1√
1+ω2τ2

exp [i arctanωτ].
(6.21)

The absolute values and the phases of the transfer functions are shown in Fig. 6.7.
At the frequency ω0 = 1/τ , the input voltage is attenuated by 1/

√
2 ≈ 0.707 by

both filters. The CR filter attenuates frequencies ω < ω0 while high frequencies
are passing the circuit, so the CR circuit is called a high-pass filter. The RC circuit
passes low frequencies and attenuates high frequencies and is called a low-pass
filter. At the frequency ω0, the phase shift between the input and the output voltage
is arctan(1) = π/4 = 45o.

From Eq. (6.4c,d) we know that the differentiation in the time domain corre-
sponds to a multiplication with s in the Laplace domain and that the integration in
the time domain corresponds to division by s in the Laplace domain. The transfer
function of a ‘differentiator’ or ‘integrator’ is therefore s or 1/s. The RC filter there-
fore becomes an integrator for large values of τ , or more precisely if the frequency
1/τ is much lower than all the frequencies contained in the signal. The CR circuit
approaches a differentiator if τ is small, i.e., if the frequency 1/τ is much higher
than the frequencies contained in the input signal.

To conclude this section we investigate the pole-zero and zero-pole filters shown
in Fig. 6.8, which are used extensively for signal shaping. The transfer functions of
the two filters are given by
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Fig. 6.7 Absolute value and phase of the transfer function for an RC (low-pass) and a CR (high-
pass) filter. At the frequency ω0 = 1/τ the input voltage is attenuated by 1/

√
2 ≈ 0.707 and the

phase shift between the input and the output signal is π/4 = 45o



190 6 Electronics for Drift Chambers
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a) b)

Fig. 6.8 Pole-zero (a) and zero-pole (b) filters used for unipolar shaping of exponential signals

WPZ(s) =
s+1/τ1

s+1/τ2
τ1 = R1C τ2 =

R1R2

R1 +R2
C τ1 > τ2 (6.22)

and

WZP(s) =
τ1

τ2

s+1/τ1

s+1/τ2
τ1 = R2 C τ2 = (R1 +R2)C τ1 < τ2. (6.23)

Equations (6.22) and (6.23) are direct applications of the concepts presented in the
last paragraph of Sect. 6.1.1. The first filter is called pole-zero because the trans-
fer function has a single pole and a single zero, and the pole s = −1/τ2 is smaller
than the zero s = −1/τ1 of the transfer function. For the zero-pole filter the zero is
smaller than the pole. The transfer functions of both filters are shown in Fig. 6.9a.
The pole-zero filter passes low frequencies and attenuates high frequencies by
k = R2/(R1 +R2). The zero-pole filter attenuates low frequencies by a factor k and
passes high frequencies. At a frequency ω = 1/

√
τ1τ2 the input voltage is attenu-

ated by
√

k for both filters, which is the geometric mean of the transfer functions at
zero frequency and infinite frequency.

Applying an exponential signal with time constant τ1 to the input of both fil-
ters with time constants τ1 and τ2 results in an exponential output signal with time
constant τ2 (Fig. 6.9b) [NIC 73]:

V (s) = L [e−
t

τ1 Θ(t)] =
1

s+1/τ1
V1(s) = WPZ(s)V (s) =

1
s+1/τ2

. (6.24)
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Fig. 6.9 (a) Transfer functions of the pole-zero and zero-pole filter. (b) Output of both filters for
an input signal with the form exp(−t/τ1). The output signal is an exponential with time constant
τ2, so the pole-zero filter shortens the exponential tail while the zero-pole filter lengthens the tail
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Therefore the pole-zero filter is used for shortening exponential signal tails in
electronic circuits, and we also use it later to shorten the tail of wire chamber
signals.

For later use we give the delta response of the pole-zero filter, which evaluates to

wPZ(t) = L −1 [WPZ(s)] = δ (t)− τ1 − τ2

τ1τ2
e
− t

τ2 Θ(t). (6.25)

As mentioned above, we only discuss transfer functions with real poles in this
book. A transfer function of this kind can be represented by a sequence of CR,
RC, pole-zero and zero-pole filters because the form given in Eq. (6.10) can
be interpreted as a product of suitably chosen transfer functions WCR, WRC,WPZ ,
and WZP.

6.1.4 Cascading of Circuit Elements

Let us assume two RC filters which are connected as shown in Fig. 6.10. An ap-
plication of the combination rules of the four impedances (Sect. 6.1.1) yields the
transfer function

V2(s) =
V (s)

(k + sRC)(1/k + sRC)
�= V (s)

(1+ sRC)2 (6.26)

with k = (3 −
√

5)/2. The transfer function of two cascaded circuit elements is
therefore not simply equal to the product of the two individual transfer functions.
The reason is that the second RC filter takes current out of the first filter so that the
voltage at its output is no longer V1 = 1/(1+ sRC)V (s).

In order to decouple the two circuits we must introduce a so-called voltage buffer
between them, which is an active device of infinite input impedance, infinite band-
width, and voltage gain G. Such a buffer produces an output signal which is an exact
copy of the input signal scaled by G. Owing to the infinite input impedance, no cur-
rent is taken out of the first RC circuit and the transfer function becomes the product
of the individual transfer functions. A realization of such a buffer was shown earlier
in Fig. 6.2a.

R

Cv(t) v2(t) v1(t) v3(t)v1(t)

R

C

R

Cv(t)

R

C

a) b)

Fig. 6.10 (a) Series connection of two RC filters. As the second filter is ‘loading’ the first, the
transfer function is different from the product of the individual transfer functions. (b) Two RC
filters separated by a voltage buffer of infinite input impedance. For this setup the transfer function
is given by W (s) = WRC(s)WRC(s)
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We conclude that a cascade of circuit elements with individual transfer functions
W1(s),W2(s) . . .Wn(s), which are decoupled by ideal voltage buffers, has a transfer
function equal to the product

W (s) = W1(s)×W2(s)× . . .×Wn(s) . (6.27)

6.1.5 Amplifier Types, Bandwidth, Sensitivity, and Ballistic Deficit

The practical realizations of linear signal processing systems discussed above are
amplifiers and filter circuits connected to the detector electrodes. Parameters that
characterize these devices, such as gain and bandwidth, have a range of differing
definitions in the literature on microelectronics. We therefore review and define the
vocabulary for the discussion of detector electronics.

Bandwidth Limit: In the frequency domain, an amplifier is characterized by the
gain |W (iω)| and the phase shift arg[W (iω)] for each frequency. The bandwidth
limit of an amplifier is defined as the frequency at which the signal transmission has
been reduced by 3 dB from the central or midrange reference value. Since the power
level is defined as 10log(P/Pre f ) dB and the voltage level as 20log(V/Vre f )dB,
a 3dB reduction corresponds to a power level of ≈ 0.5 and a voltage level equal
to ≈ 0.708 ≈ 1/

√
2 of the value at the centre frequency reference [MOT 93]. The

bandwidth limit of the RC low-pass filter is thus given by fbw = 1/2πτ = 1/2πRC.
Rise Time, Peaking Time: The rise time tr of a pulse is defined as the time taken

for its leading edge to rise from 10 to 90% of the peak height. The peaking time tp

of a pulse is defined as the time taken for its leading edge to rise from zero to peak
height. When we talk about the peaking time of an amplifier we mean the peaking
time of its delta response.

Voltage, Current, and Charge Amplifiers: A voltage amplifier processes a
voltage signal presented at its input and is characterized by high input impedance.
A current amplifier processes the current signal flowing into the amplifier and is
characterized by low input impedance. The signals in wire chambers are induced
current signals, as discussed in the previous chapter. The example of the drift tube in
Sect. 5.6.1 shows that the detector capacitance Cdet together with the input resistance
Rin forms an integration stage with bandwidth limit of fbw = 1/2πRinCdet , which is
undesirable if one wants to preserve the fast signal. In order to preserve the chamber
signal shape, the input impedance of the amplifier must be small compared to all
other impedances in the detector or in the ideal case, equal to zero, which means
that we use current amplifiers for readout of wire chambers. If the bandwidth of
the current amplifier is such that it integrates a significant fraction of the chamber
signal, or the entire chamber signal, it is usually called a charge amplifier.

Sensitivity of Current and Charge Amplifiers: The filters discussed in the
previous sections transform an input voltage signal to an output voltage signal, and
therefore the dimension of the transfer function is [W (s)] = 1. The transfer function
of a current amplifier that transforms a current input signal into a voltage output
signal can be written as V (s) = kW (s)I(s), where k has dimensions of V/A=Ω and
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W (s) keeps the dimension 1. In the time domain the relationship between the input
and output signals is

v(t) = k
∫

w(t − t ′)i(t ′)dt ′ = kw(tp)
∫

w(t − t ′)
w(tp)

i(t ′)dt ′ = g
∫

h(t − t ′)i(t ′)dt ′.

(6.28)

The value w(tp) is the peak of the delta response w(t), and the dimensionless func-
tion h(t) is the normalized delta response. An input current pulse of i(t) = Qδ (t)
results in an amplifier output peak voltage of v(tp) = gQ. We call g which has the
dimension V/C, the sensitivity of the amplifier, Typical wire chamber amplifiers
have sensitivities in the range of 1–50 mV/fC.

Ballistic Deficit: If a current amplifier has a peaking time tp which is much
longer than the duration of the input current signal i(t), the convolution integral can
be approximated and the output pulse is given by

v(t) = g
∫

h(t − t ′)i(t ′)dt ′ ≈ gh(t)
∫

i(t ′)dt ′ = gh(t)Qtot . (6.29)

The peak of the output signal is gQtot . The output pulse height is therefore propor-
tional to the total signal charge and such an amplifier is called a charge amplifier.
For timing purposes or due to high signal rates, one typically wants to preserve the
signal speed and keep the pulse width to a minimum. Although the amplifiers used
for wire chambers will always have peaking times shorter than the maximum drift
time of the ions, an amplifier that integrates a significant fraction of the induced
charge is traditionally still called a charge amplifier.

As long peaking times limit the rate capability of a detector one usually has to
live with a compromise between pulse-width and charge measurement accuracy.
The incomplete measurement of the signal charge is characterized by the so-called
ballistic deficit, which is defined as the difference between the amplifier output pulse
height for the input signal i(t) and the output pulse height if the entire input signal
charge Qtot =

∫
i(t)dt is contained in a delta current pulse Qtotδ (t).

Equivalent Block Diagram: In Sect. 6.1.1 we saw that the transfer function
W (s) of a linear electronic circuit is specified by an expression of the form

W (s) = A
(s− z1)(s− z2) . . .(s− zn)

(s− p1)(s− p2) . . .(s− pm)
. (6.30)

Let us now assume that we have defined such a transfer function and we want to
find an electronic circuit realization of it. As an example we assume that we want to
transform a voltage signal V1(s) by the transfer function

V2(s) = W (s)V1(s) = G
s+α

(s+β )(s+ γ)
V1(s), (6.31)

where α,β , and γ are positive and real. We can interpret W (s) as the product of a
pole-zero filter and an RC filter, so a possible realization of this transfer function
can be seen in Fig. 6.11, where a pole-zero and an RC filter are coupled by an
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Fig. 6.11 Cascade of an RC
filter and a pole-zero filter

C

v(t) v1(t)R2
R1

R

C

G

ideal voltage buffer of gain G. Such a representation is of course not unique and
there are several ways to realize a transfer function. The important point is that any
transfer function can be represented by a cascade of simple, elementary circuits,
which facilitates the circuit analysis and serves as a basis for the actual design.

Up to now we have investigated filters that convert voltage input signals into volt-
age output signals. However, the signals induced on chamber electrodes are current
signals, so for our block diagram representation we need an idealized device which
converts a current input signal into a voltage signal. We assume an idealized device
with infinite bandwidth such that for a current input signal i(t) we get a voltage
output signal v(t) = ki(t). With this device we can complete our block diagram rep-
resentation of the detector readout electronics (Fig. 6.12). In principle this kind of
block diagram can also be used for a practical realization, where the voltage buffer
and current to voltage converter are devices with a bandwidth that must be broader
than the bandwidth of the other circuit elements. Although most designs of chamber
electronics consist of cascaded blocks with intermediate buffers, there are numerous
different ways of realizing the individual transfer functions. As outlined earlier, the
goal of this chapter is not the design a practical realization of the readout electronics
but its precise specification. The block diagram defined above serves as a basis for
the circuit realization.

6.2 Signal Shaping

The transfer function W (s) of the readout electronics must be chosen in order to
optimize the measurement of the quantity of interest, such as signal charge or signal
time. For this discussion the electronics noise plays a key role, and we have to
characterize noise sources and apply the theory of optimum filtering. Parameters

R1 R2

C

R

C v1(t)

Gk

i(t)

v(t) = k i(t)

Fig. 6.12 An ideal current to voltage converter followed by a CR and pole-zero filter
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to be considered for this optimization process are rate capability (pulse width) and
crosstalk as well as the practical aspects for the realization of the electronics.

In this section we first discuss two common examples of amplifier transfer func-
tions, a unipolar and bipolar shaper, and we discuss their characteristics as outlined
in the last section. After that we describe various techniques to remove the long
1/(t + t0) tail of wire chamber signals in order to avoid pileup of signals at high
rates.

6.2.1 Unipolar and Bipolar Signal Shaping

Two commonly used transfer functions for signal shaping, a so-called unipolar
shaper and bipolar shaper, are defined by

Wuni(s) = kA
1

(1+ sτ)n+1 Wbip(s) = kA
sτ

(1+ sτ)n+1 . (6.32)

The equivalent block diagram of the unipolar shaper (Fig. 6.13a) consists of an
ideal current-to-voltage converter with equivalent resistance k followed by n + 1
RC filters. The filters are separated by n ideal voltage buffers with voltage gains
G1,G2 . . .Gn, which results in a gain factor of A = G1G2 . . .Gn. The bipolar shaper
uses n RC filters followed by a single CR filter, as shown in Fig. 6.13b. The delta
responses w(t) of the two shapers are calculated by performing the inverse Laplace
transforms of Eqs. (6.32), which are tabulated in standard textbooks [OPP 97]. Writ-
ing w(t) = gh(t), with the peak of h(t) normalized to unity, we find

huni(t) = en
( t

nτ

)n
e−

t
τ Θ(t) hbip(t) =

er
√

n

(
n− t

τ

)( t
rτ

)n−1
e−

t
τ Θ(t) (6.33)
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Fig. 6.13 (a) Unipolar shaping circuit consisting of n+1 identical RC filters which are separated
by ideal voltage buffers. (b) Bipolar shaping circuit consisting of n identical RC filters and a single
CR filter with the same time constant
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Fig. 6.14 Delta response for an unipolar shaper consisting of five RC filters and a bipolar shaper
consisting of four RC filters and a single CR filter. (a) The plot gives the delta responses for the
same value of τ and shows that the bipolar response is the derivative of the unipolar response.
(b) The plot shows the two delta responses with the same peaking time

with the sensitivity

guni =
kA
τn!

nn

en gbip =
kA
τn!

rn

er

√
n

r
r = n−

√
n. (6.34)

Figure 6.14a shows the two delta responses for n = 4. The unipolar shaper has a
peaking time of tp = nτ . Mathematically the bipolar delta response is the derivative
of the unipolar response, because Wbip(s) = τsWuni(s) and a multiplication with s
in the Laplace domain corresponds to a derivative in the time domain [Eq. (6.4c)].
Thus the bipolar delta response crosses the zero line at t = nτ . The peak and the
minimum of the bipolar delta response are situated symmetrically around the zero
crossing time at tp = τ(n−√

n) and tm = τ(n+
√

n). If we want the peaking time tp

of the two shapers to be equal we have to use the RC time constant τ = tp/n for the
unipolar shaper and τ = tp/r for the bipolar shaper.

huni(t) =
(

t
tp

)n

en(1−t/tp)Θ(t), (6.35)

hbip(t) =
1√
n

(
n− rt

tp

)(
t
tp

)n−1

er(1−t/tp)Θ(t), (6.36)

Huni(s) =
tp enn!

(n+ stp)n+1 Hbip(s) =
1√
n

st2
p ern!

(r + stp)n+1 . (6.37)

Here we have used the symbols H(s) to represent the Laplace transforms of the
delta responses h(t) normalized to unity at the peak. Figure 6.14b shows the two
delta responses with identical peaking times and n = 4.

The absolute value of the transfer function for the two shapers with a peaking
time tp is given by

|Wuni(iω)| = kA√(
1+ω2t2

p/n2
)n+1

|Wbip(iω)| = kAωtp/r√(
1+ω2t2

p/r2
)n+1

. (6.38)
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Fig. 6.15 Absolute value of the transfer functions for the unipolar and the bipolar shaper as a
function of the dimensionless number ωtp, assuming n = 4. The plot in (a) has a linear coordinate,
and the plot in (b) shows the two transfer functions in units of dB. The horizontal line indicates
the −3dB level. Both shapers attenuate frequencies higher than ω ≈ 1/tp. The transfer function of
the bipolar shaper shows a maximum at ω = (

√
n− 1)/tp and monotonically decreases for lower

frequencies. At zero frequency the transfer function of the bipolar shaper is zero

The two transfer functions are depicted in Fig. 6.15. The unipolar shaper passes
all frequencies up to the 3-dB bandwidth limit of ωbw = n

√
21/(n+1)−1/tp, which

evaluates to ωbw ≈ 1.54/tp for n = 4. The transfer function of the bipolar shaper
has a peak at ω = (

√
n− 1)/tp and lower and higher frequencies are attenuated.

For n = 4 the peak of the transfer function is located at ω = 1/tp and the 3-dB
bandwidth limit is ωbw ≈ 1.81/tp, similar to the one from the unipolar shaper. For
our purposes it is sufficient to assume that the bandwidth limits of a unipolar and
a bipolar shaper of the same peaking time tp are identical. For DC signals, which
means ω = 0, the transfer function of the bipolar shaper is zero. The name ‘bipolar
shaper’ comes from the fact that the positive part of the signal is followed by a
negative part (‘undershoot’) of equal area, such that the time integral over the entire
signal is zero. This follows from the fact that Hbip(0) = 0, which can be seen by
using Eqs. (6.4d) and (6.4j):

lim
t→∞

g
∫ t

−∞
hbip(t ′)dt ′ = lim

s→0
s

1
s

Hbip(s) = Hbip(0) = 0. (6.39)

In fact, for any device with a transfer function having the property W (0) = 0, the
integral of the delta response w(t) is zero, which means that the positive signal part
has an area equal to the negative signal part. The same is true for any output signal
V1(s) = W (s)V (s) of the device:

lim
t→∞

∫ t

−∞
v1(t ′)dt ′ = lim

s→0
s

1
s

W (s)V (s) = W (0)V (0) = 0. (6.40)

In physical terms, the zero in the transfer function at s = iω = 0 implies that DC
signals are fully attenuated. Only sinusoidal components with frequencies ω > 0
pass the circuit, and because all individual sinusoidal components are bipolar the
entire signal is bipolar.
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A device with a transfer function W (s) having the property W (0) = 0 is called an
AC coupled device. If W (0) is non-zero it is called DC coupled. The drift tube circuit
discussed in Sect. 5.6.1 is an AC coupled system because the capacitor blocking the
high voltage U from the amplifier also blocks the low-frequency components of the
signal.

In the following we discuss the processing of a wire chamber signal by the two
shapers discussed above. The currents flowing into the input of the readout electron-
ics are typically not exactly equal to the current signals induced on the electrodes,
but they are already ‘shaped’ by the effects of the passive detector elements pre-
ceding the amplifier together with the input impedance of the amplifier. In order to
avoid the complications of this input circuit, which we discuss later, we consider for
the moment only the drift tube from Sect. 5.5, where the tube wall is set to potential
−U and the wire is grounded. We assume that the connection of the wire to ground
is performed through a current amplifier of zero input impedance with transfer func-
tion Wuni or Wbip. The induced current signal is therefore equal to the current flowing
into the amplifier and is given by the form

i(t) =
q

2t0 ln(b/a)
1

1+ t/t0
0 < t/t0 < tmax =

b2

a2 −1. (6.41)

As the Laplace transform of this signal cannot be written in closed form we
calculate the output signal by numerical evaluation of the convolution of i(t) with
the amplifier delta response. We assume the same sensitivity g and peaking time
tp for the unipolar and bipolar shaper. We must therefore perform the convolution
of i(t) with ghuni(t) or ghbip(t), where we insert τ = tp/n for the unipolar and
τ = tp/(n−√

n) for the bipolar shaper. We just present the integral for the unipolar
shaper, which reads as

v(t) = g
∫ t

0
huni(t − t ′)i(t ′)dt ′ → (6.42)

v(t)
gq

=
1

2ln(b/a)

∫ t

0

[
e

t0
tp

(
t
t0
− t ′

t0

)
e
− t0

tp

(
t

t0
− t′

t0

)]n 1
1+(t ′/t0)

dt ′

t0
.

As an example we use a drift tube with a parameter b/a = 100, giving a value
of tmax = 104t0 for the signal duration. For a t0 value of 1 ns this evaluates to tmax =
10 μs. Figure 6.16a shows the amplifier output signals for n = 4 and a value for
tp/t0 = 10. For a t0 value of 1 ns this corresponds to an amplifier peaking time of
10 ns. The bipolar signal returns to zero after a time of t/t0 ≈ 100, while the output
signal of the unipolar shaper shows a very long tail that will lead to signal pileup at
high counting rates.

For our assumed parameters the signal has a peak of vp/gq = 0.22, which means
that the ballistic deficit is 78%. Figure 6.16b shows the amplifier output signal for
increasing values of tp/t0. The longer the peaking time the larger the signal and the
smaller the ballistic deficit. For tp > tmax the signal peak approaches v = gq and
the ballistic deficit approaches zero. The pulse height is related to the signal charge
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Fig. 6.16 (a) Output of a unipolar and bipolar amplifier for a drift tube signal of form 1/(t + t0).
The amplifier parameters are n = 4 and tp/t0 = 10. The ballistic deficit for this set of parameters
is 78%. (b) Amplifier output for the unipolar shaper with n = 4 and various values of tp/t0 =
1,10,30,150. The longer the peaking time the larger is the signal. For tp > tmax = 104t0, the peak
approaches a value of vp = gq

‘integrated’ by the amplifier. Let us assume that we approximate the delta response
by a ‘box’ with a duration TI equal to the period that the delta response exceeds 90%
of its peak value. We can state that the width of the box is equal to the ‘flat part’ of
the delta response, and for the unipolar and bipolar shaper discussed in this chapter
we have TI � tp/2, as can be seen in Fig. 6.17a. We therefore assume a device with
a delta response hbox(t) = 1 for 0 < t < TI and hbox(t) = 0 outside this interval. The
output signal of such a device is

v(t) = g
∫ t

0
hbox(t − t ′)i(t ′)dt ′ = g

∫ t

t−TI

i(t ′)dt ′ (6.43)

and the peak of the signal is

vp = v(TI) = g
∫ TI

0
i(t ′)dt ′ = gQ(TI) =

gq

2ln b
a

ln

(
1+

TI

t0

)
. (6.44)

The signal peak is thus equal to the sensitivity g times the total charge induced
within the duration TI of the flat top of the delta response. We call the time TI the
integration time of the amplifier. Figure 6.17b shows the charge integrated during a
time TI = tp/2, together with the signal peak of the exact expression from Eq. (6.42).
We see that they are almost identical, which justifies the above assumptions. In
order to have no ballistic deficit, the flat top of the delta response has to be longer
than the duration of the entire signal, being 104t0 in our case. Because a signal
duration of several microseconds is usually not compatible with rate requirements
we always use only a fraction of the induced charge. However, since the induced
charge increases just with the logarithm of the integration time, it takes only a time
of 200t0 to integrate half the charge, corresponding to a ballistic deficit of 50%. It
takes another 9800t0 to induce the remaining 50% of the charge.

We can conclude that the peak of the amplifier output signal is proportional to
the charge integrated during the duration of the ‘flat top’ (>90% of the peak value)
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Fig. 6.17 (a) Approximation of the unipolar delta response by a box with a width corresponding
to the duration of the flat top of the signal. (b) Output signal peak for the unipolar delta response
huni(t) and the box delta response hbox(t) with a width TI equal to the flat top of huni(t). We see
that interpreting TI as the amplifier integration time is a very good approximation

of the amplifier delta response. For wire chamber signals, where the induced charge
increases only with the logarithm of the elapsed time, this means that the ballistic
deficit is 80% for integration times of ≈ 10–20t0 and 50% for integration times of
≈ 100–200 t0 ns. In order to have a ballistic deficit below 10% one has to integrate
for 103–104t0, corresponding to several tens of microseconds.

6.2.2 Signal Tail Cancellation

The long tails of the wire chamber signals result in undesired signal pileup even at
modestly high counting rates. There are several possibilities for removing this signal
tail. The simplest and most preferable is the use of the bipolar shaper shown in the
last section. For the example of t0 = 1ns and tp = 10ns we saw that the width of the
positive signal part is ≈ 30ns followed by an undershoot of about 70 ns duration.
The baseline is ‘restored’ after a total duration of 100 ns.

There are, however, applications where such a bipolar pulse is undesirable and
we want to remove the signal tail without producing an undershoot. One reason
is the worsening of the signal-to-noise ratio for this shaping method, as pointed
out in Sect. 6.3. Another reason concerns the pulse width. We show in this section
that the ‘dead-time’ of 100 ns, mentioned in the example above, can be reduced to
about 40 ns with a unipolar shaping scheme. A third reason concerns crosstalk. We
have seen that the signal induced on the wire where the avalanche is taking place
has negative polarity and the signal induced on the neighbouring wire has positive
polarity. Applying a negative discriminator threshold to the wire signal registers
only the avalanche wire. If we read the wire signals with a bipolar shaping amplifier
there is a negative undershoot of the cross-induced signals, which can also trigger
the discriminator, resulting in crosstalk.

The standard technique for realization of unipolar tail cancellation is the use
of one or several pole-zero filters [BOI 82]. As we saw in Sect. 6.1.3, a pole-zero
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filter with time constants τ1 and τ2 transforms an exponential signal of the form
exp(−t/τ1) into an exponential signal with time constant τ2 (Fig. 6.8). In order
to apply such a procedure to our wire chamber signal we first approximate the
signal

i(t) =
q

2t0 ln b
a

1
1+ t/t0

= I0
1

1+ t/t0
(6.45)

by a sum of exponentials with increasing time constants τn = t0/αn:

i(t) � I0

N

∑
n=1

An e−αn t/t0 = I0

N

∑
n=1

An e−t/τn τn < τn+1. (6.46)

By choosing the number of exponential terms N sufficiently large, the signal can be
approximated to any desired accuracy. The Laplace transform of the above expres-
sion is

I(s) = L [i(t)] = I0

N

∑
n=1

An

s+1/τn
. (6.47)

For illustration we use two exponentials:

i(t) = I0

(
A1e−t/τ1 +A2e−t/τ2

)
I(s) = I0

(
A1

s+1/τ1
+

A2

s+1/τ2

)
(6.48)

and rewrite the expression as

I(s) = I0
(A1 +A2)
(s+1/τ1)

(s+1/τ)
(s+1/τ2)

τ = τ1τ2
A1 +A2

A1τ1 +A2τ2
< τ2. (6.49)

Applying a pole-zero filter with the time constants τ2 and τ to the signal, i.e.,
WPZ(s) = (s+1/τ2)/(s+1/τ), results in the output signal

I2(s) = I(s)
s+1/τ2

s+1/τ
= I0

A1 +A2

s+1/τ1
i2(t) = I0(A1 +A2)e−t/τ1 , (6.50)

which is a single exponential. This means that applying a pole-zero filter with
these specially chosen time constants to the sum of two exponential signals is
equivalent to ‘removing’ one of the exponential terms. The procedure is easily ex-
tended to the sum of several exponentials. Representing i(t) by the sum of three
exponentials we need two pole-zero filters to arrive at a single exponential, and
for N exponentials we need N − 1 filters to remove all but the first exponential
term.

In order to find the constants An and αn = τn/t0 that approximate i(t), we mini-
mize the area (charge) between i(t) and the sum of exponentials

∫ kt0

0

(
1

1+ t/t0
−

N

∑
n=1

Ane−αnt/t0

)2

dt → min. (6.51)
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Fig. 6.18 The 1/(1+ t/t0)
signal together with the sum
of 1/2/3/4/5 exponentials that
approximate the signal to
within ±10%. Using three
exponentials the signal can be
approximated up to t = 100t0
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For a given time interval T = kt0 the number of exponentials N must be chosen
such that the signal is represented with the desired accuracy. Figure 6.18 shows
the chamber signal approximated by up to five terms. Using 1/2/3/4/5 exponen-
tial terms, we can represent the signal with 10% accuracy in a time interval of
3/20/100/350/1200 t0.

As a numerical example we use three exponentials and two pole-zero filters:

I0
1

1+ t/t0
� I0

(
A1e−α1t/t0 +A2e−α2t/t0 +A3e−α3t/t0

)
. (6.52)

The minimization procedure in Eq. (6.51) results in the parameters

A1 = 0.62 A2 = 0.29 A3 = 0.052
τ1

t0
= 0.92

τ2

t0
= 5.6

τ3

t0
= 57.

As before, we rewrite the expression with a common denominator

3

∑
n=1

An

s+1/τn
=

as2 +bs+ c
(s+1/τ1)(s+1/τ2)(s+1/τ3)

(6.53)

a = A1 +A2 +A3 b =
A1

τ2
+

A1

τ3
+

A2

τ1
+

A2

τ3
+

A3

τ1
+

A3

τ2
c =

A1

τ2τ3
+

A2

τ1τ3
+

A3

τ1τ2
.

Writing the polynomial in the numerator in the form as2 + bs + c = a(s + 1/τa)
(s+1/τb), we get

I(s) � I0
a

(s+1/τ1)
(s+1/τa)
(s+1/τ2)

(s+1/τb)
(s+1/τ3)

. (6.54)

Inserting the fit parameters we have τa = 2.04t0 and τb = 26.9t0. By applying two
pole-zero filters with time constants τ2,τa and τ3,τb we transform the signal into a
single exponential

I2(s) = I(s)
(s+1/τ2)
(s+1/τa)

(s+1/τ3)
(s+1/τb)

= I0
a

s+1/τ3
(6.55)

i(t) = I0 (A1 +A2 +A3)e−t/τ1 = I0 0.96e−t/0.92 t0 . (6.56)
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Fig. 6.19 (a) Wire chamber signal processed by a unipolar shaper of n = 4 and tp/t0 = 10 together
with the same signal filtered by of two pole-zero filters. The pulse width is reduced to a length of
T � 40t0. (b) The same signal on a smaller vertical scale, showing a tail with a height corresponding
to about 1% of the chamber signal

Figure 6.19 shows the result of applying these two pole-zero filters to the wire cham-
ber signal of Eq. (6.45), which was processed by a unipolar shaper with n = 4 and
tp/t0 = 10. For this purpose we convoluted the signal v(t) from Eq. (6.42) with the
delta response of the pole-zero filter from Eq. (6.25):

v2(t) =
∫ t

0
wPZ(t − t ′)v(t ′)dt ′ = v(t)−

∫ t

0

τ2 − τa

τ2τa
e−(t−t ′)/τa v(t ′)dt ′. (6.57)

We see that the result is very satisfactory: the two pole-zero filters have considerably
reduced the signal length to about 40t0 and only a small tail below 1% of the peak
value remains.

Improvement for Long Peaking Times: In the previous example, two of the
fitted exponential time constants were rather small (0.92t0 and 5.6t0) because they
had to represent the steep part of the original wire signal at very short times. But
for amplifiers with long peaking times tp � t0, the output pulse shape does not
depend on the exact form of the input at times < tp, but only on the signal charge
during this time. We can then achieve a closer approximation by first convoluting
the exponential terms with the amplifier response and then fitting this signal to the
chamber signal processed by the amplifier. The fit can extend over times as long as
several hundred t0.

v1(t) = g
∫ t

0
huni(t − t ′)

I0

1+ t ′/t0
dt ′ v2(t) = L −1

[
gHuni(s)I0

N

∑
m=1

Am

s+1/τm

]
.

(6.58)

The parameters An,αn in the analytic expression of v2(t) are then determined such
that the ‘amplified’ signal v1(t) is represented as closely as possible. The analytic
representation of v2(t) can be expressed by making use of the relations

L −1
[

Huni(s)
A

s+1/τ

]
= L −1

[
tp enn!

(n+ stp)n+1

A
(s+1/τ)

]
= A f (t,τ)
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f (t,τ) = tp n!en
(

n− tp

τ

)−(n+1)
(

e−t/τ − e−nt/tp
n

∑
m=0

1
m!

[(
n− tp

τ

) t
tp

]m
)

.

(6.59)

Thus for three exponentials the signal is expressed as

v2(t) = gI0 (A1 f (t,τ1)+A2 f (t,τ2)+A3 f (t,τ3)) . (6.60)

For a value of tp/t0 = 10, the signal v1(t) is approximated to within ±10% accuracy
up to 350t0 by the parameters

A1 = 0.60 A2 = 0.10 A3 = 0.016
τ1

t0
= 2.48

τ2

t0
= 18.8

τ3

t0
= 191.

Using two pole-zero filters with these time constants, giving τa = 9.37,τb = 107.35
results in the output signal presented in Fig. 6.20. A small bump with a height of
0.5% of the peak value is followed by a remaining tail of only 0.25% relative height.
This is an improvement of a factor 2 compared to the previous scheme.

Although the unipolar-shaped pulse is shorter and avoids the undershoot, there
are several issues that have to be considered carefully when choosing this shaping
scheme. First, one has to evaluate the effects of the remaining signal tail, which lasts
up to 105t0 in our example. Although the tail is small, the statistical superposition
of many of them may result in significant baseline fluctuations. In addition, the pre-
cise cancellation of the signal tail requires a very good knowledge of the chamber
signal shape. Because the time constant t0 depends on the ion mobility and applied
high voltage, the signal shape depends on the working point and the gas mixture
that is used. The optimized pole-zero filter constants are therefore in principle only
valid for a single well-defined working point. Another word of caution concerns the
realization of the pole-zero filters. Resistors and capacitors have certain production
variations. In integrated circuits, the absolute values of R and C elements have typ-
ical errors of up to 10%, so the precise realization of the time constants is rather
difficult. The tail cancellation effect is mostly defined by the so-called pole/zero
ratio τ1/τ2, which itself is determined by the ratio of resistors. Although ratios of
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Fig. 6.20 (a) Application of the two pole-zero filters to the wire chamber signal, where the pole-
zero time constants were determined after processing with the unipolar shaper. (b) The same signal
on a smaller vertical scale showing a tail of only 0.25% height
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resistors on ICs are typically correct to about 1% it is still very tedious to fine-tune
the time constants.

It is therefore advisable to use the bipolar scheme whenever possible owing to
its simplicity and insensitivity to working point variations and imprecisions of elec-
tronic elements. In the case where unipolar shaping is required for reasons outlined
in the introduction, it is usually essential to make the pole-zero time constants pro-
grammable in order to be able to compensate for process variations and adapt to
changing working points.

6.2.3 Signal Pileup, Baseline Shift, and Baseline Fluctuations

At high counting rates, when the time between signals is not long compared to
the signal pulse width, the individual signals pile up and cause a deterioration of
the signal quality. This can be calculated if one uses the fact that the individual
pulses come at random and therefore have an exponential distribution of the time
interval between any two consecutive signals. The probability P(t)dt for finding a
time interval t, t +dt is

P(t)dt =
1
τ

e−t/τ dt = νe−νt dt, (6.61)

where ν is the average pulse rate and τ = 1/ν is the average time between two
consecutive pulses. The effect of different pulse shapes at high counting rates is
demonstrated in the four parts of Fig. 6.21, where we see a rapid random sequence
of identical pulses treated by four different shapers. We use the remainder of this
section to quantify what we see. The rate ν is taken to be ν = 5× 10−3/t0, which
corresponds to 5 MHz when t0 = 1 ns.

For the following discussion it is useful to separate the signal into a ‘signal’
part of duration T and a ‘tail’ part (Fig. 6.22). The first high-rate effect to discuss is
signal pileup, where the ‘signal’ part of two signals arrives within a time interval that
is smaller than the signal pulse width T . This pileup results in incorrect charge or
time measurement. In a particle tracking system, the particle trajectory is typically
measured by several readout channels, and the track reconstruction can detect the
channel with incorrect charge or time measurement. Consequently the measurement
from this channel is not used in the reconstruction, which results in an inefficiency
of this channel. The signal pileup probability, or inefficiency ε , for a pulse width T
and a rate ν is given by

ε =
∫ T

0
νe−νt dt = 1− e−νT ≈ T

τ
for T 	 τ . (6.62)

The rate requirement is therefore one key element for specification of the maximum
pulse width T , which in turn specifies the shaping strategy. The signal part of the
bipolar pulse in Fig. 6.16a has a duration of T ≈ 80t0 while the signal part of the
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Fig. 6.21 A fast random sequence of chamber signals processed by four different shapers:
(a) unipolar shaper, (b) bipolar shaper, (c) unipolar shaper with two pole-zero filters, and (d) unipo-
lar shaper with two pole-zero filters and AC coupling. The rate dependence of the baseline for these
four shapers is treated in this subsection

unipolar pulse with two pole-zero filters in Fig. 6.20 has a length of T ≈ 40 t0. This
causes an inefficiency of 40% for the bipolar shaper and 20% for the unipolar shaper
at the average pulse separation of 200t0.

The second high-rate effect is ‘tail’ pileup, where a signal is ‘sitting’ on the
superimposed tails of one or several preceding signals, causing a displacement of
the baseline. We would like to know the average value of the displacement (‘baseline
shift’) as well as its variance (‘baseline fluctuation’). The baseline fluctuations cause
a deterioration in the measurement accuracy rather than an inefficiency.
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Fig. 6.22 (a) Separation of the chamber pulse into a ‘signal’ part and a ‘tail’ part. (b) Signal pileup
leading to incorrect charge or time measurements. Removing these incorrect measurements leads
to inefficiency
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In the following we would like to compute the effect of the random superposition
of a number of tails from preceding signals. Looking at the wire chamber signal
processed by a unipolar shaper in Fig. 6.16, we see that the output signal shows a
long tail that approaches the baseline only slowly. The distinction between the signal
and the tail parts is of course somewhat arbitrary and we take the beginning of the
tail at a time tmin when the signal level falls below 10% of the peak value, which
corresponds to t/t0 = 70 for the assumed parameters. For t � t0, the convolution
integral in Eq. (6.42) is approximated by

v(t) ≈ gi(t)
∫ ∞

0
huni(t ′)dt ′ ≈ gqcn tp

2ln(b/a)
1
t

tmin < t < tmax, (6.63)

where

cn =
1
n

( e
n

)n ∫ ∞

0
yne−ydy =

enn!
nn+1 . (6.64)

In order to calculate the average baseline and the baseline fluctuation we use
Campbell’s theorem, which states the following: If signals of equal shape v(t) are
randomly superimposed at an average rate ν , the average and the variance of the
resulting signal are given by

v = ν
∫ ∞

−∞
v(t)dt σ2

v = ν
∫ ∞

−∞
v(t)2dt. (6.65)

Inserting the expressions from Eq. (6.63) for the signal tail we find an average base-
line v and an r.m.s. baseline fluctuation σv of

v = νt0
gqcn

2ln(b/a)
tp

t0
ln

tmax

tmin
and σv ≈

√
νt0

gqcn

2ln(b/a)
tp

t0

√
t0

tmin
. (6.66)

Normalizing these values to the peak vp of the signal v(t) given in Eq. (6.44), we
find the values

v

vp
=

νt0
ln(1+ tp/2t0)

cn tp

t0
ln

tmax

tmin

σv

vp
≈

√
νt0

ln(1+ tp/2t0)
cn tp

t0

√
t0

tmin
.

For the parameters of b/a = 100, n = 4, tp/t0 = 10, and tmax/t0 = (b/a)2 = 104,
assuming that the beginning of the tail is at tmin/t0 = 70, Fig. 6.23 shows the average
baseline shift and r.m.s. With a value of t0 = 1ns and a rate ν = 5MHz we find a
baseline shift and r.m.s. corresponding to � 15% and � 5% of the average signal.
The baseline shift of 15% can be clearly made out in Fig. 6.21a. If the signal charge
q is not constant but is fluctuating around an average value of q with a variance of
σq, an extension of Campbell’s theorem tells us that the value of q in the expression
for v must be replaced by q and the value of q in the expression for σv must be

replaced by q
√

1+σ2
q /q2.

This example illustrates the undesirable effects of the long tail associated with
the simple unipolar shaper. We now set out to remove the signal tail as explained
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Fig. 6.23 Average baseline shift (a) and baseline fluctuation (b) for various shapers, as a function
of the signal rate ν

in the previous section. Let us apply two pole-zero filters with time constants τ2,τa

and τ3,τb, which remove the signal tail up to ≈ 3τ3. For times longer than 3τ3 the
pole-zero filters are just scaling the signal without changing the shape, because the
transfer is then approximately constant,

iω +1/τ2

iω +1/τa

iω +1/τ3

iω +1/τb
≈ τa

τ2

τb

τ3
for ω 	 1

τ3
. (6.67)

The signal tail is therefore given by the expression from Eq. (6.63) scaled by this
factor:

v(t) ≈ gqcn tp

2ln(b/a)
τa

τ2

τb

τ3

1
t

3τ3 < t < tmax. (6.68)

The expressions for the average and r.m.s of the baseline are equal those from
Eq. (6.66), scaled by τaτb/τ2τ3 with tmin replaced by 3τ3.

In order to express the baseline shift and fluctuation as a fraction of the pulse
height we must first find the peak of the unipolar-shaped signal processed by two
pole-zero filters. We use the fact that the pole-zero filters remove all but the first ex-
ponential, so the remaining signal is given by i(t) = Aexp(−tτ1) [Eq. (6.56)], where
we have defined A = A1 + A2 + A3. The procedure for determining the pole-zero
parameters results in a time constant τ1 which is much smaller than the amplifier
peaking time tp, so we can assume that the entire signal charge is contained in a
delta signal and find the amplifier output peak vp:

vp = gQ = g
∫ ∞

0
i(t)dt =

gq

2t0 ln b
a

Aτ1. (6.69)

Thus, the average baseline shift and the r.m.s. fluctuation are

v

vp
= νt0

cn

A

tpτaτb

τ1τ2τ3
ln

tmax

3τ3

σv

vp
≈
√

νt0
cn

A

tpτaτb

τ1τ2τ3

√
t0

3τ3
.

Figure 6.23 shows the results using the time constants that we determined in the
previous section. With t0 = 1 ns at a rate of 5 MHz we find a baseline shift of 3%
and a baseline fluctuation of 0.8% of the average pulse height. In Fig. 6.21c we see
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the sequence of input pulses for this shaping scenario, and the reduction of baseline
shift and fluctuation is evident. These numbers can be still improved by using more
pole-zero filters with time constants τc,τ4 . . . The above formula can be directly
extended for this case. With this technique we can in principle reduce the baseline
shift and fluctuation to any desired level, but it requires a very precise choice of filter
constants matched to the chamber input signal and the working point.

At this stage one might be tempted to AC couple the signal by adding a CR
filter with time constant τ > τ3 in order to remove the remaining signal tail. But
that introduces a new tail because any signal processed by a CR filter is strictly
bipolar. Let us nonetheless consider this possibility for a moment. We approximate
the unipolar signal by a box signal of duration T and amplitude vp, as shown in
Fig. 6.20. Sending this signal through a CR filter of time constant τ we find the
following output signal, sketched in Fig. 6.24:

v(t)
vp

= e−
t
τ t < T

v(t)
vp

= −(1− e−
T
τ )e−

t
τ t > T. (6.70)

The CR filter has created a new tail, an undershoot with an area equal to the area of
the positive signal part. The baseline shift and fluctuation due to this tail are again
calculated with Campbell’s theorem, and assuming that τ � T we find

v

vp
= −ντ(1− e−

T
τ ) ≈−νT

σv

vp
=
√

ντ
2

(1− e−
T
τ ) ≈ T

√
ν
2τ

. (6.71)

The baseline shift is independent of the filter time constant and simply reflects the
area balance of the positive and negative signal parts. In case the average distance
between two pulses τ is twice the pulse width τ = 1/ν = 2T we have v/v0 = 0.5,
which means that the baseline has shifted by half of the amplitude. The baseline
fluctuation decreases for a longer RC time constant τ and can be reduced to any de-
sired level. The fact that the baseline shift cannot be removed and that we therefore
have a rate-dependent baseline makes this shaping scheme with a long RC time con-
stant undesirable for high-rate applications. An example of such an RC filter applied
to a sequence of chamber pulses is shown in Fig. 6.21d.

The simplest way of avoiding baseline fluctuations is the bipolar shaper described
in the last section. The results of the previous paragraph also apply to this shaper
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Fig. 6.24 Square signal processed by a CR filter. The CR filter introduces a signal tail with an area
equal to the positive signal part
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because the bipolar shaper is equal to a unipolar shaper with an additional CR fil-
ter. But now the CR time constant is short—of the same order as the signal length
T —so this shaper creates a large, but short undershoot. The area balance is done
‘quickly’, and after a duration of two to three times tp the signal is back to the
baseline.

The tail of the output of the bipolar shaper is found by writing the output signal
in the Laplace domain and interpreting the s in the numerator as the derivative of
the unipolar output signal:

v(t) = L −1 [gHbip(s)I(s)
]
= g

d
dt

L −1
[

1
s

Hbip(s)I(s)
]
≈ gi′(t) lim

s→0

1
s

Hbip(s)

(6.72)

v(t) ≈−gq
ern!√
nrn+1

1
2ln(b/a)

t2
p

t2 . (6.73)

We see that the negative signal tail tends to zero as 1/t2, which guarantees a quick
return to the baseline, and the influence on the following pulses is eliminated. The
effect of this shaping scheme is shown in Fig. 6.21b. It can be seen that the pulse
width and therefore the inefficiency is increased, but the baseline is equal to zero
and the fluctuations are eliminated.

Conclusion of this Section

There are two linear signal processing strategies by which we can avoid baseline
shift and baseline fluctuations at high counting rates owing to the long tail of wire
chamber signals:

Unipolar Shaping: A unipolar shaper and several pole-zero filters matched to
the individual exponentials that represent the chamber signal are used. The advan-
tage is a ‘short’ unipolar response. There are, however, several disadvantages to this
approach. First of all, the entire electronics readout chain must be DC coupled. This
causes problems for the electronics design because the DC offset variations within
the electronics chain, which are due to component imperfections or temperature
variations, must be very carefully controlled. The DC coupling also makes the elec-
tronics sensitive to low-frequency noise, which is very undesirable. In addition, the
wire signals are intrinsically AC coupled owing to the capacitor that decouples the
wire high voltage from the amplifier input, so a unipolar shaping strategy is simply
not realizable with a linear electronics circuit. In addition, the pole-zero parameters
must be carefully tuned to the signal tail constant t0, which depends on the chamber
geometry, the gas used, and even the operating voltage. Since the absolute values of
resistors and capacitors in most electronics technologies can vary by 10–20% with
respect to the nominal values, the needed precision of the achieved time constants
must be very carefully evaluated. A solution to this problem is the introduction of
programmable pole-zero time constants, but this, of course, adds another level of
complication.
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Bipolar Shaping: A bipolar shaper, realized by a fast CR ‘differentiation’ with
a timescale of the same order as the peaking time, produces a large, but short, sig-
nal undershoot. The signal dead time is approximately doubled with respect to the
unipolar + pole-zero shaping scheme and, as we will see later, the signal-to-noise
ratio is slightly reduced. The simplicity of the realization and the reduced sensitivity
of the signal shape to the input signal parameters makes this scheme a very desirable
one.

Nonlinear Shaping: Another possibility for avoiding the signal tail, which was
not discussed here, is a nonlinear circuit for elimination of the signal tail. These
circuits are usually called ‘baseline restorers’ and are realized by different kinds of
nonlinear components such as, e.g., diodes. These nonlinear baseline restorers allow
one to avoid the area balance present in linear AC coupled systems, so it is possible
to realize unipolar shaping without undershoot even if the signal is AC coupled.
A widely used circuit for this purpose is the Robinson restorer, which is described
in detail in [NIC 73]. The important advantages of linear signal processing that were
praised in the fourth paragraph of the introduction to this chapter are then lost.

6.2.4 Input Circuit

Up to now we have considered a setup where the induced current signal is equal to
the current flowing into the amplifier. The detector capacitance, together with the
finite amplifier input impedance, that shape the signal and the current flowing into
the amplifier is different from the induced one. In general, the amplifier input current
is calculated from the induced currents by applying them to the network representing
the wire chamber and the other impedance elements connected to the electrodes
(Fig. 6.25). If we want to study effects of coupling among different electrodes and
readout channels, such as, e.g., crosstalk, we have to use the entire equivalent circuit
representing the chamber. For studying the readout signal on a single electrode we
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Fig. 6.25 Equivalent input circuit relating the currents induced on the electrodes to the amplifier
input current
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Fig. 6.26 Input circuit and equivalent block diagram for a typical cathode and a wire readout
channel

can neglect the impedances between the electrodes, which are typically large, and
just consider the electrode capacitance and amplifier input impedance. Figure 6.26
shows the circuit for a typical cathode and wire readout channel. A cathode strip or
cathode pad is typically directly connected to the amplifier input and the induced
current is divided between the input impedance Rin and the detector capacitance
Cdet . As a result, the amplifier input current is equal to

Iin(s) =
1

1+ sτ1
Iind(s) τ1 = RinCdet . (6.74)

This is equivalent to the transfer function of an RC integration stage, as indicated
in the equivalent block diagram in Fig. 6.27. The wire is also connected to the high
voltage through a load resistor RL and decoupled from the amplifier with a capacitor
C. The amplifier input current is therefore related to the induced current as follows:

Iin(s) ≈
1

(1+ sτ1)
sτ2

(1+ sτ2)
Iind(s) τ1 = RinCdet τ2 = RLC. (6.75)

This transfer function is equivalent to an RC filter with time constant τ1 followed by
an CR filter with time constant τ2. This means that the wire chamber signal is AC
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Fig. 6.27 Equivalent block diagrams for a cathode channel processed by a unipolar shaper with
n = 2 and a double pole-zero filter (top), and a wire channel processed by a bipolar shaper with
n = 2 (bottom)
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coupled and the output signal of any linear signal processing chain connected to the
wire is strictly bipolar.

The current signal Iin(s) is then processed by the readout electronics chain.
Figure 6.27 shows how the input circuit is represented in an equivalent block
diagram. The examples show a cathode signal processed by a unipolar shaper with
two pole-zero filters and a wire signal processed by a bipolar shaper. The amplifier
output signals for the two scenarios are given by

V (s) =
1

1+ sRinCdet

G
(1+ sτ)n+1

s+1/τ1

s+1/τa

s+1/τ2

s+1/τb
Iind(s), (6.76)

V (s) =
1

1+ sRinCdet

sRLC
(1+ sRLC)

Gsτ
(1+ sτ)n+1 Iind(s). (6.77)

6.3 Noise and Optimum Filters

By this point we are familiar with various possible transfer functions and pulse
shapes for analyzing wire chamber signals so that for a given application we have a
choice for achieving the best performance. There is one more element which often
plays an essential role when designing optimal chamber electronics—the inevitable
noise present in all electronics elements as well as in the wire chamber itself, which
represents a background against which the signals have to be distinguished. In the
following sections we characterize noise as a general phenomenon, discuss some
relevant noise sources, and develop a method for studying the influence of the noise
source on the signal pulse shapes. In the end we want to find the optimum transfer
function for a given application.

For optimum charge measurement in cathode pad and cathode strip chambers, the
noise may limit the measurement accuracy and we want to choose H(iω) such that
the signal-to-noise ratio is maximized. The choice of H(iω) for time measurement
is more complicated. The time resolution of a wire chamber is determined by the
chamber internal effects of primary ionization and electron dynamics together with
the electronics noise. In order to minimize the noise effect one has to maximize the
so-called ‘slope-to-noise’ ratio, which may sometimes pose conditions unfavourable
for exploiting the measurement accuracy of the chamber itself.

In principle the signal-to-noise ratio and slope to noise ratio can always be
improved by increasing the chamber gas gain. On the other hand, for reasons of
chamber ageing and rate limitations, one wants to work at the lowest possible gas
gain.

The ‘optimum filters’ that minimize the effect of noise are related in a unique way
to the input signal shape and the noise spectrum, but they are not always realizable
or practical. They serve as a guideline for choosing the parameters for a realistic
design and show how far it deviates from the theoretically optimal performance.
The optimum filter might result in a very long pulse which is not compatible with
rate requirements or it might increase the impact of the chamber internal effects.
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After reviewing some basic definitions we consider the two main noise sources:
passive detector elements, which are ‘irreducible’ noise sources, and amplifier noise,
which is subject to specification. Finally we discuss how to optimize the amplifier
transfer function in order to achieve the best possible signal-to-noise ratio.

6.3.1 Noise Characterization

Noise Alone
The random statistical movement of the atomic constituents of matter is the

source of electrical noise on any signal line. It occurs as random fluctuations of
currents and voltages. For a description of noise, statistical concepts are appropriate.

Any observation of noise happens during an observation time T . Let us assume
a random voltage signal n(t) in the example depicted in Fig. 6.28a, where T was
chosen to be 100 ns. The variance σ2

n of n(t) is a measure of the fluctuation. If the
average of the noise signal n is zero, the variance is given by

σ2
n = n2 −n2 =

1
T

∫ T/2

−T/2
n(t)2dt. (6.78)

The frequency content can be described by a discrete set of frequencies fk = k/2πT
with k = 1,2, . . .. If we let T go to infinity, the frequency content of the noise
becomes continuous, and a noise power spectrum w( f ) may be defined over the
continuous frequency variable f , so that the variance of the fluctuation is given by

σ2
n =

∫ ∞

0
w( f )d f =

1
2π

∫ ∞

0
w(ω)dω. (6.79)

The noise power spectrum is the essential tool for the characterization of electronics
noise. It specifies the contribution in the frequency interval d f to the square of the
fluctuating quantity. If n(t) is a voltage or a current on unit resistance, then n2(t) is
a power and w( f ) a frequency power density; hence the name.
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Fig. 6.28 (a) Random noise signal n(t). (b) Power spectral noise density w( f ) of the noise signal,
which characterizes the noise signal in the frequency domain
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The noise power spectrum must obviously be related to the Fourier components
of n(t). The relationship is as follows: If the Fourier transformation is

n(t) =
1

2π

∫ ∞

−∞
N(iω)eiωt dω, (6.80)

then, using (6.78) and N∗(−iω) = N(ω) and going to the limit, σ2
n becomes

lim
T→∞

2
T

∫ T

0
|N(iω)|2dω, (6.81)

which implies

w( f ) = lim
T→∞

2
T
|N(iω)|2. (6.82)

As an illustration, a typical power spectrum w( f ) has been defined to be flat up to a
cutoff frequency at 150 MHz, together with an example of a fluctuating voltage n(t)
containing frequencies according to w( f ). Both quantities are depicted in Fig. 6.28.
The higher this cutoff the more ‘spiky’ the noise.

In the case where the noise power spectrum is constant for all frequencies we call
the noise ‘white’ because the noise signal contains all frequencies in equal amounts.
The power spectrum w( f ) is not only useful for calculation of the r.m.s. fluctuation
of the noise signal, but it is also related to some other key parameters which charac-
terize a noise signal. As was shown by Rice [RIC 44] the average frequency of zero
crossings of n(t) is given by

fzero = 2

√∫ ∞
0 f 2 w( f )d f∫ ∞

0 w( f )d f
. (6.83)

The evaluation of Eq. (6.83) using the noise power spectrum in Fig. 6.28b gives
fzero = 0.31GHz and the noise signal in Fig. 6.28a counts 27 zero crossings in
100 ns, giving a rate of 0.27 GHz. For a noise spectrum that is constant up to a
sharp cutoff frequency f0 this expression evaluates to fzero = 2/

√
3 f0 = 1.155 f0.

The frequency of zero crossings of the noise signal is therefore approximately given
by the cutoff frequency of the power spectrum.

Noise in a Linear Network

Now we want to find out how the spectral density of a noise signal is transformed
if it is sent through a linear network with transfer function H(iω). The noise sig-
nal N(iω) is transformed into N(iω)H(iω). Using Eq. (6.82), we see that the noise
power spectrum is transformed into

w( f ) → w( f )|H(i2π f )|2. (6.84)
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If we assume a noise signal with a constant power spectrum up to a given frequency,
i.e., w( f ) = w0 for f < f0, we find a noise r.m.s. of σn =

√
w0 f0. If we send this

noise signal through a low-pass filter of unity gain with a sharp cutoff frequency
f1 < f0, the noise r.m.s. becomes σn =

√
w0 f1, meaning that the r.m.s. is reduced

by a factor
√

f1/ f0. As shown later one can improve the signal-to-noise ratio by
filters that are passing only the frequencies contained in the signal and removing the
others.

Next we want to find the noise power spectrum at a given circuit node of a linear
network in the case where there are several independent (uncorrelated) current and
voltage noise sources distributed throughout the network. Elementary circuit theory
tells us that for a set of voltage and current sources distributed in a linear network,
the voltage on a given circuit node can be calculated in the following way: The
contribution of each individual source is computed separately by ‘switching all other
sources off’. A source is ‘switched off’ by shorting it out if it is a voltage source
and by opening it if it is a current source. The final voltage is then the sum of these
individual contributions. For the network in Fig. 6.29a, e.g., the voltage at node
V1(s) due to the voltage source V (s) and current source I(s) is

V1(s) =
Z2(s)

Z1(s)+Z2(s)
V (s)+

Z1(s)Z2(s)
Z1(s)+Z2(s)

I(s) . (6.85)

If these are noise sources with voltage noise power spectrum wv( f ) and current
noise power spectrum wi( f ), Eq. (6.84) tells us that the noise power spectrum
wv1( f ) is given by

wv1( f ) =
∣∣∣∣ Z2(iω)
Z1(iω)+Z2(iω)

∣∣∣∣
2

wv( f )+
∣∣∣∣ Z1(iω)Z2(iω)
Z1(iω)+Z2(iω)

∣∣∣∣
2

wi( f ). (6.86)

In order to characterize the signal, noise, and impedance of a wire chamber electrode
connected to the input of an amplifier, it is very useful to further simplify the picture
by using Thevenin’s and Norton’s theorems (Fig. 6.30):

A linear, active network which contains one or more voltage or current sources
can be replaced by a single impedance Z(s) with a series voltage source VT (s)
(Thevenin’s theorem), or by the same impedance with a parallel current source IN(s)
(Norton’s theorem).

The impedance Z(s) can be obtained by shorting out the voltage sources, open-
ing up all current sources, and finding the equivalent impedance of the network.
The Theveninn equivalent voltage VT (s) or Norton equivalent current IN(s) can be

Z1(s) Z2(s)I(s) V1(s)

V(s)

a) b)

Z2(s) wv1(f)

wv(f)

wi(f)Z1(s) 

Fig. 6.29 A voltage source and a current source embedded in a linear network
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V(s) Z(s) V(s) = Z(s)I(s)IN(s)V(s)

Linear
Active

Network

Fig. 6.30 Illustration of Thevenin’s and Norton’s theorems

calculated by the well known network rules. The voltage VT (s) and current IN(s)
are related by VT (s) = Z(s)IN(s). As an example we use the circuit of Fig. 6.29.
By shorting the voltage source and opening the current source, the impedance
of the entire network becomes Z(s) = Z1(s)Z2(s)/(Z1(s) + Z2(s)). The Thevenin
equivalent voltage is given by V1(s) from Eq. (6.85) and the current is therefore
I1(s) = V (s)/Z(s) = I(s)+V (s)/Z(s). The same is true for noise sources: the entire
network can again be represented by a single impedance Z(s) with a series volt-
age noise power spectrum wv( f ) or a parallel current noise power spectrum wi( f )
(Fig. 6.31), and the two are related by

wv( f ) = |Z(i2π f )|2 wi( f ) . (6.87)

Thus we can represent the wire chamber electrode connected to an amplifier
input by a single impedance element Z(s) with a parallel current source representing
the chamber signal and a parallel current noise power spectrum representing all
electrode noise sources (Fig. 6.32).

In this way we can evaluate the relative magnitudes of signal and noise at the
amplifier input, which allows us to choose the amplifier transfer function in order to
optimize the signal-to-noise ratio at the amplifier output.

6.3.2 Noise Sources

Having the vocabulary and the tools for noise analysis at hand we can now discuss
the different noise sources in a wire chamber setup. We consider only the noise in-
herent in the detector and the amplifier and not external ‘man-made’ noise that may
originate in various electrical devices outside of the detector. Of course, any such
interference noise has to be eliminated before approaching the inherent ‘irreducible’
detector and amplifier noise.

Z(s)

wv(f)

wv(f) Z(s)
wv(f)=wi(f)

Linear
Network

with noise
sources

wv(f) |Z(i2πf)|2 wi(f)

Fig. 6.31 Thevenin’s and Norton’s theorems applied to the noise power spectra



218 6 Electronics for Drift Chambers

Z(s) wi(f) I(s)

Fig. 6.32 Representation of the wire chamber elements, noise sources, and the chamber signal by
a single impedance Z(s) with a single current source and a single noise power spectrum

There are many physical processes that create noise in electric circuits. The three
most important ones for particle detection are shot noise, thermal (Johnson) noise,
and flicker (1/ f ) noise.

Shot Noise

This electrical noise is based on the random arrival of the smallest quantized units
of electric charge. The name derives from an analogy with the pellets of a shotgun.
If the random sequence is governed by the arrival probability p per unit of time
alone (no correlations) one easily calculates the mean number m of particles in an
observation time T as well as the variance, m2 −m2:

m = pT (6.88)

The actual integer number m is distributed around this mean according to the Pois-
son probability distribution

P(m,m) =
mm

m!
e−m. (6.89)

The expectation value of m2 is therefore

∞

∑
m=0

m2 mm

m!
e−m = m+m2. (6.90)

It follows that the variance is equal to the mean, a famous property of the Poisson
distribution. A power spectrum for this kind of noise exists once an electrical pulse
e0 f (t) is associated with each noise particle carrying the elementary charge e0. We
have a random sequence of identical current pulses coming at a mean frequency ν .
Campbell’s theorem applies [RIC 44]. It states that under these circumstances the
average current I and its variance σ2

I are given by

I = ν e0

∫ ∞

−∞
f (t)dt σ2

I = ν e2
0

∫ ∞

−∞
f (t)2dt. (6.91)

Applying Parseval’s theorem we can transform the expression for σI into

σ2
I = 2νe2

0

∫ ∞

0
|F(iω)|2 d f . (6.92)
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This can be identified with the noise power spectrum, which has the following form:

w( f ) = 2νe2
0|F(iω)|2. (6.93)

We note that the power spectrum of shot noise depends on the size of the elementary
charge. For a given current νe0 the fluctuation increases with the size of e0.

If we imagine f (t) to be a δ -function δ (t) we have F(iω) = 1 and the noise
power spectrum becomes white:

w( f ) = 2νe2
0 = 2e0I. (6.94)

This means that we can imagine white noise to be a random sequence of delta current
pulses.

Thermal or Johnson Noise

In 1906 Einstein predicted that Brownian motion of the charge carriers would lead
to a fluctuating potential between the ends of any resistance in thermal equilibrium.
The effect was first observed by Johnson [JOH 28] and its power spectrum was
calculated by Nyquist [NYQ 28].

One way to establish the voltage and current fluctuations at the ends of the con-
ductor is to sum up the contributions of the electrons that move about in thermal
equilibrium with the constituents of the conductor. Every electron moving with a
velocity ui down the conductor contributes a small current e0ui; this is related to
the mean energy per degree of freedom, proportional to the absolute temperature
and the resistance of the conductor. Such a microscopic derivation can be found in
[KIT 58].

A more general derivation of the noise power spectrum follows. It is based on
the insight that the electric and magnetic fields created by the movements of the
electrons themselves possess degrees of freedom of the system which are in thermal
equilibrium with their surroundings and therefore must carry the average energy
of kT/2 per degree of freedom or kT per mode of the electromagnetic field (k =
Boltzmann constant, T = absolute temperature).

In order to find the noise power spectrum, all that remains to be done is to prop-
erly count the modes of the electric and magnetic fields. This was achieved by
Nyquist [NYQ 28] in a paper immediately following the paper in which Johnson
[JOH 28] first described thermal noise. One considers two equal resistors R1 =
R2 = R connected by an ideal lossless transmission line as indicated in Fig. 6.33.
The transmission line is given an impedance equal to R, the resistors are in ther-
mal equilibrium at the absolute temperature T . The voltage fluctuations at R1 are
accompanied by current fluctuations so that some electrical power P1 is flowing
into the line at R1 and is being absorbed in R2. There are no reflections because
the line is properly terminated. An equal amount of power flows from R2 through
the transmission line into R1. The amount of P1 can be connected to the vibrational
modes of the transmission line in the following way: Let L be its length and c the
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R1 R2

Fig. 6.33 Nyquist’s idealized arrangement of two resistors in thermal equilibrium, connected by a
lossless transmission line that has no thermal properties

velocity of propagation of the electrical signals on the line. Let the line suddenly be
isolated from the resistors by short-circuiting both ends so that the electromagnetic
waves are trapped and their modes can be counted. The nth mode has a wavelength
λn = 2L/n and a frequency fn = nc/2λ , so in the frequency interval d f there are
2L/cd f modes (n � 1), each of which carries an average energy kT .

One half of this energy is the power emitted from R1 during the time interval L/c,
so this power is equal to

kT d f (6.95)

in the frequency interval d f . It is remarkable that the power density is independent
of f , R1, and the nature of the resistance.

If one wants to express the emitted power P1 of one resistor in terms of the fluc-
tuation of the voltage V1(t), one may calculate the total power dissipated in the two
resistors as

2P =
1
2
(V1 +V2)I =

1
2R

(
V 2

1

4
+

V 2
2

4

)
(6.96)

using I(t) = 1/2(V1(t)+V2(t)/2R plus the fact that V1 and V2 fluctuate incoherently.
Therefore, using Eq. (6.96), we find that the voltage fluctuations per frequency unit
across a resistor is

V 2
1 = 4kT R. (6.97)

One says that the voltage noise power spectrum is

w( f )d f = 4kT Rd f , (6.98)

where w( f ) is expressed in V 2/Hz [cf. Eq. (6.79)]. As it is independent of f it is
‘white’ noise.

Next we have to consider the temperature noise originating from a passive net-
work described by a complex impedance. Let the resistance R be connected to such
a network with impedance Z( f ) = R( f )+ iX( f ), according to Fig. 6.34 By reason-
ing according to Nyquist, as above, we know that the power transferred from the

R2Z(iω) = R(ω) + iX(ω)

Fig. 6.34 Resistance R and network with impedance R( f ) + iX( f ) on the same temperature,
connected to each other. The noise at R is V 2; the noise from the network is V ( f )2
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resistance to the network is equal to that transferred in the opposite direction. The
former is seen by simple circuit theory to be equal to

V 2 R( f )
(R+R( f ))2 +X( f )2 d f (6.99)

and the latter is simply equal to

V ( f )2 R
(R+R( f ))2 +X( f )2 d f . (6.100)

We therefore have to conclude that the voltage power spectrum of any passive net-
work is

wv( f )d f = 4R( f )kT d f = 4kT Re[Z(iω)]d f . (6.101)

The equivalent parallel current noise spectrum is

wi( f )d f =
wv( f )
|Z(iω)|2 = 4kT Re[1/Z(iω)]d f . (6.102)

Following upon Planck’s work, we see that Eq. (6.95 ff) are only valid as long as
the average energy of one mode of the electromagnetic field is much higher than the
quantum energy h f at frequency f (where h is Planck’s constant). This is actually
the case for all our electronics applications. Under quantum conditions, i.e., for
temperatures and frequencies where kT becomes comparable to h f , instead of (6.95)
the average energy becomes

h f
exp(h f /kT )−1

per mode of the electromagnetic field (6.103)

which approaches kT when kT � h f .

Flicker or 1/f Noise

There is a third category characterized by increasing noise with decreasing fre-
quency. It is not one single well-defined process that causes it but rather a whole
collection, sometimes not completely understood. This ‘flicker noise’ typically oc-
curs in non-equilibrium situations in devices subjected to applied bias voltage to
which it is often proportional. Examples are the contact resistance fluctuations in
carbon microphones and carbon resistors or leakage currents in the dielectric of ca-
pacitors. It occurs in field effect transistors and in many other places discussed in
the literature [ROB 74].

The frequency dependence of the power spectrum is often near 1/ f and may
extend to very low f (on the order of 10−2 Hz or less). It is well known that a single
relaxation process (one governed by an exponential decrease in the time response)
cannot account for the observations, but perhaps a superposition of several would
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serve. One way to parametrize the power spectrum w( f ) is to specify the frequency
f0 at which the flicker noise is equal to the white temperature noise power wT ( f ) =
4kRT d f . The total power spectrum is then

wtot( f ) = wT ( f )(1+ f0/ f ) . (6.104)

The value of f0 has been seen to differ from as low as 10−2 Hz to as high as
100 MHz, but it is usually in the region of a few kHz [ROB 74]. For practical
purposes active electronic circuit components often carry a specification from the
manufacturer.

Amplifier Noise

When dealing with signals it is sufficient to represent the amplifier only by its
transfer function W (s) and input impedance Zin(s), without referring to the spe-
cific realization. However, the noise output signal of an amplifier depends on the
specific components of the amplifier circuit and the noise analysis is generally quite
a complex task.

It is possible to represent the effect of all the noise sources inside an amplifier
by two noise generators at the input of the device, which is treated as a noise-free
black box [MOT 93]. If the noise generators are correlated there is in addition a
complex correlation coefficient; this we may neglect here because the noise sources
are typically quite independent.

Figure 6.35 shows this model, where a voltage noise generator wv( f ) and a
current noise generator wi( f ) are placed at the input of the noiseless amplifier. Tra-
ditionally the voltage and current noise power spectra of the amplifier are called
wv( f ) = e2

n( f ) and wi( f ) = i2n( f ). We call e2
n( f ) the series noise power spectrum

and i2n( f ) the parallel noise power spectrum of the amplifier. This provides a com-
plete representation of all the internal amplifier noise sources. The voltage and
the current noise generators must be dealt with separately because their relative
importance depends on the impedance of the signal source. Once this in known
they may be contracted in a single noise generator. This is our procedure in what
follows.

wv(f) = e2
n(f)

Zin(s)wi(f) = i2n(f)

Fig. 6.35 Amplifier noise model, where the noise is formulated by a pair of noise sources at the
input of a noiseless device. The voltage noise generator wv( f ) = e2

n( f ) and current noise generator
wi( f ) = i2n( f ) provide a complete representation of the numerous noise sources inside the real
amplifier
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In order to calculate the noise power spectra e2
n( f ) and i2n( f ) one must of

course analyze the entire amplifier circuit. Although the numerous elements of the
amplifier all contribute to the noise, it is typically only the first element of the circuit
(first transistor or feedback resistor) that dominates the noise. The thermal noise,
shot noise, and 1/ f noise of this first element defines the noise performance of the
amplifier. Bipolar transistors or field effect transistors are the classical basic build-
ing blocks for detector readout electronics. In semiconductor devices incorporating
a p-n junction, the charge carriers interact with fields due to applied external volt-
ages only in the depletion layer at the junction, which is a region that is distinct
from the region where their statistical properties are established. Bipolar transistors
are therefore typical shot-noise-limited devices. The noise power spectra are then
given combinations of 2e0Ic,2e0Ib, and 2e0Ie where Ic, Ib, Ie are the collector, base,
and emitter currents.

If the interaction region with the external fields coincides with the region where
the carrier fluctuations are generated and the carriers remain approximately in ther-
mal equilibrium during their interaction, the thermal (Johnson) noise will dominate.
Field effect transistors, where the fluctuations are established in the channel, are
typical thermal-noise-limited devices [ROB 74]. The 1/ f noises of bipolar and field
effect transistors show characteristic differences which have to be considered in the
choice of electronics technology.

However, the purpose of our discussion is not the design of the amplifier but
rather it is the other way around. By comparing the wire chamber signal and
the noise due to the passive components of the wire chamber with the amplifier
noise at the input of the amplifier we can define the acceptable magnitudes of the
amplifier noise. This procedure results in a specification for acceptable amplifier
noise.

Because the shot noise and thermal noise are white noise sources we can define
an equivalent noise resistance R, where w0 = 4kT R at T = 295K gives a power
spectrum equal to the one from the input transistor. Although the parallel noise i2n
and series noise i2n can both show 1/ f noise, we limit ourselves to the following
amplifier noise spectra:

en( f )2 = 4kT Rs +B/(2π f ) i2n( f ) = 4kT/Rp. (6.105)

The series noise resistance Rs, the parallel noise resistance Rp, and flicker noise
coefficient B specify the noise behaviour of the amplifier at a given working point.

Noise in a Readout Channel, Electrode+++Amplifier

We now have all the ingredients necessary to calculate the noise levels for a readout
channel of a wire chamber. We connect the detector model from Fig. 6.32 to the
amplifier model from Fig. 6.35 and perform one final simplification: The voltage
noise source e2

n can be transformed into a current noise source by using Eq. (6.87),
and the resulting current noise sources can be contracted into one; the resulting
power spectrum assumes the form
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en
2(f)

in
2(f)wi(f)Z(s) Z(s)=Zin(s)

gH(s) gH(s)

I(s) w(f)I(s) Zin(s)

Fig. 6.36 All noise sources collected into a single current noise source at the amplifier input. This
is our universal model for the ensemble of chamber signal source plus amplifier

w( f ) = wi( f )+ i2n( f )+
e2

n( f )
|Z(iω)|2 . (6.106)

The current noise spectrum w( f ) is called equivalent input noise. We thus have
represented the entire readout channel by the chamber impedance Z(s), the par-
allel current noise density w( f ), the amplifier input impedance Zin(s), and the
chamber signal I(s) (cf. Fig. 6.36). Note that w( f ) is independent of the ampli-
fier’s gain and its input impedance. It is this property that makes the equivalent
input noise the most useful index upon which to compare the noise characteris-
tics of various amplifiers and devices. Summarizing the previous section, we note
that the noise components of Eq. (6.106) are as follows: The thermal chamber
noise wi( f ) is caused by the dissipative elements in the wire chamber through
wi(ω) = 4kT Re[1/Z(iω)]. The amplifier noise is represented by the parallel noise
resistance Rp, the series noise resistance Rs, and the coefficient for the 1/ f
noise:

w(ω) = 4kT Re

[
1

Z(iω)

]
+

4kT
Rp

+
4kT Rs +B/ω

|Z(iω)|2 . (6.107)

The amplifier input impedance Zin(s) enters when we calculate the signal and
noise at the output of the amplifier. The fraction of current flowing into the amplifier
is Z/(Z +Zin), so the chamber current signal and the noise current flowing into the
amplifier are

Iin(s) =
Z(s)

Z(s)+Zin(s)
I(s) win( f ) =

|Z(iω)|2
|Z(iω)+Zin(iω)|2 w( f ). (6.108)

Finally, the amplifier output signal V (s) and the variance of the amplifier output
noise σ2

v are

V (s) = gH(s)Iin(s) σ2
v =

1
2π

∫ ∞

0
win(ω)g2|H(iω)|2dω. (6.109)

In the following we use these results to discuss the three most important elec-
trode configurations: cathode readout, wire readout, and a terminated transmission
line channel. We want to see their behaviour for both a bipolar and a unipolar
shaper.
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6.3.3 Noise in Wire Chambers

Cathode Channel

This case is relatively simple because Z(s) is given only by the chamber capacitance
CD, and the parameters of the universal model are

Z(s) =
1

sCD
I(s) = Iind(s) wi(ω) = 4kT Re[1/Z(iω)] = 0. (6.110)

The capacitor CD is not a source of noise because it contains no dissipative elements.
The equivalent input noise defined in Eq. (6.107) is therefore given by

w( f ) =
4kT
Rp

+4kT Rsω2C2
D +BωC2

D. (6.111)

For the readout electronics we take the unipolar and bipolar shapers Huni(s) and
Hbip(s) from Sect. 6.2 and an amplifier input impedance Zin = Rin that is neg-
ligible compared to the detector impedance Z. We thus assume that |Z(iω)| =
1/ωCD � Rin. This is a good approximation for f 	 1/2πRinCD, which for a
typical amplifier input resistance of 50 Ω and a detector capacitance of 20 pF eval-
uates to f 	 200MHz. We set Zin = 0 for Eq. (6.108) and have Iin(s) = I(s) and
win(ω) = w(ω).

Now we can calculate the amplifier output noise according to Eq. (6.109). We
first need the expression |H(iω)|2 for the unipolar and the bipolar shapers. H(iω) is
the Fourier transform of the normalized delta response; it was specified in Eq. (6.37)
and depends on the number of stages that make up the shaping circuit (cf. Fig. 6.13);
tp is the peaking time of both the unipolar and the bipolar shaper. We obtain

|Huni(iω)|2 =
(entpn!)2

[n2 +(ωtp)2]n+1 |Hbip(iω)|2 =
1
n

(ert2
pn!)2 ω2

[r2 +(ωtp)2]n+1 , (6.112)

where r = n−√
n as the peaking times are the same. The integration over all fre-

quencies for σv leads to integrals of the form
∫

xm/(a2 + b2x2)n+1, which can be
written in closed form as

∫ ∞

0

x2k

(a2 +b2x2)n+1 dx =
1

a2n−2k+1 b2k+1

π
2

1
n!4n

(2k)!
k!

(2n−2k)!
(n− k)!

,

∫ ∞

0

x2k+1

(a2 +b2x2)n+1 dx =
1

a2n−2k b2k+2

1
2

k!(n− k−1)!
n!

.

(6.113)

The variance of the amplifier output noise is then

σ2
v =

1
2π

∫ ∞

0

(
4kT
Rp

+4kT Rs ω2C2
D +BωC2

D

)
|gH(iω)|2dω, (6.114)
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2(f)wi(f) Z(s)=Zin(s)
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Iind(s) w(f)I(s)CD
Zin(s)

Fig. 6.37 Cathode pad connected to to an amplifier and the universal model of the readout channel

which finally evaluates to

σ2
v

g2 =
(

4kT
Rp

)
Kp tp +

(
4kT RsC

2
D

) Ks

tp
+
(
BC2

D

)
Kf = ENC2. (6.115)

Kp,Ks and Kf are dimensionless parameters given by

Unipolar Bipolar

Kp =
1
2

( e
2n

)2n
(2n−1)!

1
2

e2r

(2r)2n r(2n−2)!

Ks =
1
2

( e
2n

)2n
n2(2n−2)!

3e2r

(2r)2n r3(n−1)(2n−4)!

Kf =
1

4π

( e
n

)2n
n!(n−1)!

1
4π

e2r

r2n r2(n−1)!(n−2)!

(6.116)

These parameters are of the order of unity and they are shown in Fig. 6.38. The
noise r.m.s. is written as σv = gENC, where ENC is the so-called equivalent noise
charge.

We saw earlier that injecting a delta current Qδ (t) into an amplifier of sensitivity
g results in an amplifier output pulse height of V = gQ. Therefore, injecting a delta
signal with charge Q = ENC into the amplifier results in an output pulse height
equal to the r.m.s of the amplifier output noise. The ENC characterizes the noise
level independently of the amplifier sensitivity g and is the most useful quantity for
comparing the noise behaviour of different amplifiers.

Fig. 6.38 The parameters Kp,
Ks, and Kf for the unipolar
and the bipolar shaper
represented as continuous
functions of n, the number of
stages. For n = 4 they lie
between 0.5 and 1.5
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Fig. 6.39 Equivalent noise charge (ENC) as a function of the peaking time, calculated from
Eq. (6.115). The three noise components are plotted separately, using typical values for the dif-
ferent noise sources: parallel noise (Rp = 10kΩ ) curves 1, series noise (Rs = 150Ω ) curves 2, 1/ f
noise curves 3. The resulting total noise curves S exhibit a shallow minimum. (a) unipolar shaping,
(b) bipolar shaping, both with n = 4

The three components of the ENC for the cathode channel are due to the parallel
white noise, series white noise, and the 1/ f noise of the amplifier. The noise r.m.s.
for the bipolar and the unipolar shaper as a function of amplifier peaking time is
shown in Fig. 6.39. The three components of the noise exhibit a very distinct de-
pendence on the amplifier peaking time. The parallel noise is proportional to

√
tp,

whereas the series noise is proportional to 1/
√

tp. The contribution from the 1/ f
noise is independent of the amplifier peaking time. The noise σv shows a minimum
at the peaking time topt given by

topt = CD
√

RsRp

√
Ks

Kp
ENC2

opt = 8kTCD

√
Rs

Rp

√
KsKp +BC2

DKf . (6.117)

The time constant τc = CD
√

RsRp is the so-called noise corner time constant, so
the optimum peaking time is of the same order as τc. In the following we neglect
the small 1/ f component of the noise. For estimation of the order of magnitude for
topt and ENCopt we take an example where Rp = 10kΩ and Rs = 100Ω at room
temperature T = 295 K, which results in

topt [ns] = CD[pF]

√
Ks

Kp
ENCopt = 350

√
CD[pF](KsKp)1/4 electrons. (6.118)

Assuming a detector capacitance of Cd = 20–50 pF and that Kp and Ks are of the
order of unity, we find optimum peaking times in the range from 20–50 ns and ENC
values between 1500 and 1800 electrons. We will see later that the minimum possi-
ble ENC for any kind of shaping function is given by ENC2

min = 4kTCs
√

Rs/Rp, so
we can rewrite the expression for the ENC as

ENC2(tp) = ENC2
min

√
4KpKs

1
2

(
tp

topt
+

topt

tp

)
. (6.119)
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Fig. 6.40 The factor by
which the equivalent noise
charge ENC of a unipolar and
a bipolar shaper with the
same peaking time differs
from the minimum obtainable
ENC, represented as a
continuous function of n, the
number of stages. Upper
curve: bipolar shaper; lower
curve: unipolar shaper
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The factor (4KpKs)1/4 tells us the amount by which the ENC for a given amplifier
transfer function differs from the theoretical minimum. Figure 6.40 shows this value
for the unipolar and the bipolar shaper.

It is interesting to investigate how the parameters Kp and Ks are related to the
actual shape of the electronics delta response. With the help of Parseval’s theorem
we can perform the calculation of Ks and Kp in the time domain

Kp tp =
1

2π

∫ ∞

0
|H(iω)|2 dω =

1
2

∫ ∞

0
h(t)2dt, (6.120)

Ks

tp
=

1
2π

∫ ∞

0
|ωH(iω)|2 dω =

1
2

∫ ∞

0
h′(t)2dt. (6.121)

The parallel noise is given by the time integral over h(t), which means that it in-
creases as the length of the electronic delta response, and so the peaking time
increases. The series noise is given by the integral over the derivative of h(t), and
because a shorter delta response has steeper rising and falling edges, the series noise
decreases for increasing peaking time.

Up to now we have examined how to minimize the variance σ2
v of the amplifier

output noise, which is equivalent to maximizing the signal-to-noise ratio when the
chamber signal is a delta pulse I(t) = Qδ (t).

However, our wire signal is different from a delta signal and shows the 1/(t + t0)
time dependence. As discussed in Sect. 6.2.1 the peak of the amplifier output signal
is approximately given by the charge integrated during the duration TI ≈ tp/2 of the
‘flat top’ of the delta response, i.e.,

vp(tp) ≈ gQ(tp) ≈
gq

2ln(b/a)
ln

(
1+

tp

2t0

)
. (6.122)

If we want to optimize the signal-to-noise ratio we must find the best peaking time
tp by maximizing the expression

(
S
N

)2

=
Qp(tp)2

ENC2(tp)
=
(

q
2ln(b/a)

)2 2

ENCmin
√

4KsKp

ln2(1+ tp/2t0)
tp/topt + topt/tp

,



6.3 Noise and Optimum Filters 229

Fig. 6.41 Optimum peaking
time tWire

opt for a wire chamber
signal as a function of the
time constant t0, normalized
to tδ

opt which is the optimum
peaking time for a delta input
signal

0.5 1 1.5 2

2.5
5

7.5
10

12.5
15

17.5
20

topt / topt

wire δ

t0 / topt
δ

where topt gives the optimum signal-to-noise ratio for a delta input signal. The max-
imum of the expression can only be found numerically, and Fig. 6.41 shows the
optimum peaking time as a function of the signal tail t0.

For t0 values that are much shorter than tδ
opt the wire chamber signal closely

resembles a delta pulse and the optimum peaking time for the wire readout is equal
tδ
opt . In the case where t0 is similar to or longer than tδ

opt , the optimum peaking time
tWire
opt is longer because integrating more of the induced charge is still improving the

signal-to-noise ratio.

Terminated Transmission Line

If the signal propagation time along an electrode is of the same order as the signal
pulse width as illustrated in Fig. 6.42, the electrode must be terminated in order to
avoid multiple signal reflections. A transmission line with characteristic impedance
Z0 can be terminated with a resistor RT = Z0. In this case, Z(s) consists of a sim-
ple resistor RT , which represents all the electrical characteristics of a terminated
transmission line. The chamber model parameters are given by

Z(s) = RT I(s) = Iind(s) wi( f ) =
4kT
RT

. (6.123)

While the load resistor RL for the wire channel is usually dimensioned such that
it is a negligible source of noise compared to the amplifier noise, the termination

en2(f)

in2(f)wi(f) Zin(s)Z(s)=Zin(s)

gH(s) gH(s)

Iind(s) w(f)I(s)R

Fig. 6.42 Transmission line channel connected to to an amplifier and the universal model of the
readout channel
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resistor RT of a transmission line is uniquely defined by the chamber geom-
etry and has typical values of 50–500 Ω . Therefore it is usually the termina-
tion resistor noise that dominates over the amplifier noise for a transmission line
readout.

The equivalent input noise is

w( f ) =
4kT
RT

+ i2n +
e2

n

R2
T

=
4kT
RT

(
1+

RT

Rp
+

Rs

RT

)
+

B

ωR2
T

. (6.124)

For this discussion we neglect the 1/ f noise by setting B = 0, but because the order
of magnitude of the input impedance is similar to the chamber impedance we cannot
neglect Zin as was done for the cathode channel. We therefore have

Iin(s) =
RT

RT +Rin
I(s) = γ I(s) win( f ) = γ2 w( f ). (6.125)

The output noise for the unipolar and the bipolar shaper is therefore

σ2
v = γ2g2 1

2π

∫ ∞

0
win( f ) = g2γ2 4kT

RT

(
1+

RT

Rp
+

Rs

RT

)
Kp tp. (6.126)

First we see that the noise r.m.s. is monotonically increasing with the peaking time
tp, so the smallest noise r.m.s. is achieved for the shortest peaking time. To find the
ENC we send, as before, a delta signal Qδ (t) into the amplifier, which gives the
output pulse height vp = gγQ, so the equivalent noise charge is

ENC2 =
4kT
RT

(
1+

RT

Rp
+

Rs

RT

)
Kp tp = c1 tp. (6.127)

For the cathode channel discussed in the previous section, the noise is entirely de-
fined by the amplifier noise i2n and e2

n and therefore depends only on the amplifier
design. For the terminated transmission line channel, the noise of the termination
resistor represents an irreducible noise floor and the amplifier noise is negligible
when Rp � RT and Rs 	 RT .

As before, we are interested in optimizing the signal-to-noise ratio for the wire
chamber signal:

(
S
N

)2

=
Qp(tp)2

ENC2(tp)
=

(
Q

2ln b
a

)2
ln2(1+ tp/2t0)

c1tp
→ max .

The numerical evaluation shows that the expression has a maximum at tp ≈ 8 t0.
If the input signal were a delta current pulse the signal-to-noise ratio would con-
tinuously improve by reducing the amplifier peaking time. Since the wire chamber
signal has a tail and the induced charge only increases with the logarithm of time,
there is an optimum amplifier peaking time, that maximizes the signal-to-noise
ratio.
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gH(s) gH(s)

Iind(s) w(f)I(s)RL
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Fig. 6.43 Wire connected to to an amplifier and the universal model of the readout channel

Wire Channel

The case shown in Fig. 6.43 contains more elements than there were for the cathode
and the transmission line channels. For the wire channel we have the following
electrical parameters:

Z(s) =
1

sC
+

RL

1+ sRLCD
I(s) =

sRLC
1+ sRL(C +CD)

Iind(s)

wi( f ) =
4kT
RL

(ωRLC)2

1+(ωRL(C +CD))2 ≈ 4kT
RL

for C �CD f � 1
2πRLC

.

The loading resistor RL is a source of thermal noise which is ‘filtered’ by the detector
capacitance CD and the decoupling capacitor C. The expression for wi( f ) represents
the white noise of the resistor filtered by a high-pass filter with time constant τ =
RLC. With the typical numbers of RL = 1 MΩ and C = 1 nF we have τ = 1ms.
Therefore, only frequencies of f < 160 Hz are attenuated, which is negligible for the
typical amplifier bandwidth of a few MHz, and we can neglect the effect of C and
CD. We assume again that the amplifier input resistance is negligible with respect
to the chamber impedance and we also neglect the 1/ f noise term. The equivalent
input noise is then

w( f ) =
4kT
RL

+ i2n +ω2C2
D e2

n +
e2

n

R2
L

=
4kT
RL

(
1+

Rs

RL
+

RL

Rp

)
+4kT Rsω2C2

D. (6.128)

This expression has the same form as the one for the cathode channel and the results
from there apply to this case as well.

We have seen that the unipolar shaper gives a better signal-to-noise ratio than the
bipolar shaper, but the question arises as to whether one can improve the situation
still more by yet another kind of electronics transfer function. This problem can be
solved in a remarkably general and elegant way, and it is possible find the maximum
obtainable signal-to-noise ratio from the amplifier input signal and the spectral noise
density at the amplifier input.

6.3.4 A Universal Limit on the Signal-to-Noise Ratio

In the last sections we found that we get different ENC values for different ampli-
fier transfer functions, and that for a specific shape of a delta response there is an
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optimum peaking time. We found that the unipolar shaper results in a smaller ENC
than the bipolar shaper, and the question arises as to whether we can decrease the
noise level by yet another transfer function. Or going even further we can ask, what
is the maximum obtainable signal-to-noise ratio?

The reason the signal-to-noise ratio can be improved by specific filters is the fact
the signal and the noise have different frequency spectra. So it is possible to improve
the signal-to-noise ratio by specific filters. The mathematical problem that we have
to solve can be formulated as shown in what follows.

A signal F(iω) with a superimposed noise having a power spectrum w(ω) is
processed by an amplifier with transfer function H(iω). Which transfer function
H(iω) maximizes the signal-to-noise ratio?

Using Eq. 6.3 and 6.84 we can write the amplifier output signal g(t) and the
variance of the noise at the amplifier output as

g(t) =
1

2π

∫ ∞

−∞
F(iω)H(iω)eiωt dω σ2 =

1
2π

∫ ∞

0
w(ω)|H(iω)|2 dω. (6.129)

The output signal g(t) has a maximum at some time tm when the signal-to-noise
ratio S/N at the amplifier output is

(
S
N

)2

=
(

g(tm)
σ

)2

=
1
π

∣∣∫ ∞
−∞ F(iω)H(iω)eiωtm dω

∣∣2∫ ∞
−∞ w(ω)|H(iω)|2 dω

. (6.130)

This expression has an upper limit given by the Schwarz inequality, which gives the
following relation for two complex-valued functions ψ(x) and φ(x):

∣∣∣∣
∫ b

a
ψ∗(x)φ(x)dx

∣∣∣∣
2

≤
∫ b

a
|ψ(x)|2dx

∫ b

a
|φ(x)|2dx, (6.131)

where the equal sign applies if ψ(x) = c1 φ(x) (c1 =const). If we insert

ψ(ω) =
F∗(iω)√

w(ω)
e−iωtm φ(ω) =

√
w(ω)H(iω) (6.132)

and extend the integration limits to infinity, the inequality reads as

∣∣∣∣
∫ ∞

−∞
F(iω)H(iω)eiωtm dω

∣∣∣∣
2

≤
∫ ∞

−∞

|F(iω)|2
w(ω)

dω
∫ ∞

−∞
w(ω)|H(iω)|2 dω, (6.133)

and therefore
(

S
N

)2

≤ 1
π

∫ ∞

−∞

|F(iω)|2
w(ω)

dω =
2
π

∫ ∞

0

|F(iω)|2
w(ω)

dω . (6.134)

This result is remarkable in two respects. On the one hand, the solution to the prob-
lem is surprisingly simple, while, on the other hand, the result has far-reaching
consequences: Whichever transfer function H(iω) we choose, the (S/N) will always
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be lower than the value indicated above, which can be calculated in a straightforward
fashion from the signal and the noise spectrum at the amplifier input.

Now we would like to know the optimum transfer function H(iω) and the output
signal G(iω). From the above relations we find that the equal sign applies if

F∗(iω)√
w(ω)

e−iωtm = c1

√
w(ω)H(iω) → H(iω) =

1
c1

F∗(iω)
w(ω)

e−iωtm . (6.135)

We can omit the factor exp(−iωtm) because it corresponds simply to a time delay
tm according to Eq. (6.4e). This transfer function is unique up to a constant, and
it provides the maximum signal-to-noise ratio. The amplifier output signal is then
proportional to

G(iω) = F(iω)H(iω) =
|F(iω)|2

w(ω)
g(t) = F−1[G(iω)]. (6.136)

We note that this signal g(t) is symmetric around t = 0 because G(iω) is real.
As an example we consider a wire chamber cathode pad channel, where we found

a noise power spectrum of w(ω) = 4kT/Rp + 4kT RsC2
Dω2 = a2 + b2ω2. Assum-

ing that the detector signal is a delta current pulse, we find the following optimum
signal-to-noise ratio

f (t) = Qδ (t) F(iω) = Q

(
S
N

)2

≤ 2
π

∫ ∞

0

Q2

a2 +b2ω2 dω =
Q2

ab
(6.137)

The optimum transfer function is

H(iω) =
1
c1

Q
a2 +b2ω2 h(t) = F−1[H(iω)] = c2e−|t|/τc τc =

b
a
. (6.138)

The time constant τc is called the noise corner time constant. The delta response of
the optimum filter h(t) has a peak at t = 0 and is symmetric around t = 0 from where
it decays exponentially. This delta response is called the ‘infinite cusp’ function. As
we saw earlier, a unipolar shaper with n = 6 results in a signal-to-noise ratio that is
just 15% worse than the optimum one that would be achieved by using the infinite
cusp delta response.

The current signals in a wire chamber are not delta currents but have the hy-
perbolic 1/(t + t0) form. If we use several pole-zero filters to remove the signal
tail such that only a single exponential is left, the chamber signal is given by
f (t) = A1 exp(−t/τ1) and the maximum achievable signal-to-noise ratio is smaller
than the one described above. By writing the signal amplitude in terms of the signal
charge Q =

∫
f (t)dt = A1τ1, we have

f (t) =
Q
τ1

e−t/τ1 F(iω) =
Q
τ1

1
iω +1/τ1

(
S
N

)2

≤ Q2

ab(1+ τ1/τc)
.

(6.139)



234 6 Electronics for Drift Chambers

In a previous section we found that it is very useful to approximate the cham-
ber signal by a sum of exponentials, which can be done for every possible signal
shape to any desired accuracy. By evaluating the above expressions for an in-
put signal of the form f (t) = ∑N

n=1 An exp(−t/τn) we can find the maximum
achievable signal-to-noise ratio for an arbitrary signal shape. We again write the
amplitudes in terms of the charge ‘contained’ in each exponential Qn = Anτn. The
result is

(
S
N

)2

≤ 1
ab

N

∑
n=1

N

∑
m=1

Qm

1+ τm/τc

Qn

1+ τn/τc

[
1+

2τmτn

τc(τn + τm)

]
. (6.140)

The expression can be used to investigate by what factor the noise for a realistic
amplifier transfer function deviates from the theoretical minimum.

6.4 Electronics for Charge Measurement

In the previous sections we discussed the processing of a wire chamber signal for
several typical electrode configurations, including the effects of electronic noise. Up
to now the signal induced on the electrode was assumed to have the form 1/(t + t0),
which is characteristic for any electrode configuration as long as the avalanche elec-
trons are moving in the coaxial region of the wire.

However, the signal shape applies only for a single electron that arrives at the
wire and creates a single avalanche. It would also apply for a localized cloud of
electrons arriving within a time shorter than t0. But the time spread of the incoming
electrons is generally much larger than t0, so the total signal is a superposition of
single-electron signals i0(t) = I0/(1+ t/t0),

iind(t) =
N

∑
n=1

Gni0(t − tn), (6.141)

with arrival times tn and avalanche sizes Gn. The output of the front-end electronics
is then also a linear superposition of the responses to the single electron pulses. The
question arises as to how we choose the transfer function H(iω) in order to arrive
at the best signal-to-noise ratio for this situation. Clearly, the electron arrival times
vary from event to event and the electronics can only be adjusted for an average
situation.

We first investigate the case of a TPC, where the arrival of the electrons at the
sense wires assumes a Gaussian form owing to the diffusion along the drift path. If
we define an arrival time distribution n(t) such that n(t)dt is the average number of
electrons that arrive between t and t +dt, we have

n(t)dt =
N√
2πσt

e−(t−T )2/2σ2
t dt, (6.142)
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where σt characterizes the electron diffusion along the drift path. Each arriving elec-
tron will induce a signal of the form Gi0(t), where G is the gas gain, and the discrete
sum of time-delayed signals of Eq. (6.141) becomes a convolution of n(t) with i0(t):

i(t) = G
∫ ∞

−∞
i0(t − t ′)n(t ′)dt ′. (6.143)

We realize that from a formal point of view, the arrival time distribution n(t) en-
ters like a linear signal processing device in an electronics chain. Using the Fourier
transform of n(t) we see that this becomes even more evident because we have

I(iω) = GI0(iω)N(iω). (6.144)

We can therefore apply all the results from the previous sections for optimizing the
electronic transfer function in order to achieve the best signal-to-noise ratio.

The optimum achievable signal-to-noise ratio for the average signal is given by

(
S
N

)2

=
G2

π

∫ ∞

−∞

|I0(iω)N(iω)|2
w(ω)

dω. (6.145)

If we assume that for reasons of high rate we remove the signal tail with a series
of pole-zero filters such that the single electron signal assumes an exponential form
with a time constant τ which is negligible with respect to the arrival time distribu-
tion, we can assume I0(t) = Qδ (t). If we assume in addition that the superimposed
noise is white, the optimum transfer function according to Eq. (6.135) is

H(iω) =
N∗(iω)

w0
, (6.146)

a Gaussian with the same width as the arrival time distribution.
With a wire chamber geometry shown in Chap. 7 the arrival time distribution will

be different from track to track, depending on the incident angle, the path length
variation, and diffusion. The distribution n(t) is given by the function fz(t,y) in
Eq. (7.7) and results in a width given by Eqs. (7.8) and (7.9). The optimizing process
can then be conducted as before. In general the optimum amplifier peaking time is
such that the width of the delta response is approximately equal to the electron
arrival time distribution.

The actual measurement of the charge can be done in different ways. One either
records the peak of the signal by a so-called ‘peak sensing ADC’, or one samples
the signal at regular intervals and reconstructs the signal peak by fitting the known
response to the sample points.

6.5 Electronics for Time Measurement

In this section we investigate which front-end electronics should be used in order
to extract the best time information from the chamber signal. In drift chambers, the
time information is used to determine the track position by measuring the arrival



236 6 Electronics for Drift Chambers

time of the ionization electrons at the sense wires. In so-called trigger chambers, the
time information is used to determine the time when a charged particle is passing
the detector. For the choice of the transfer function H(iω) which optimizes the time
measurement accuracy we have to consider several effects: the electronic noise,
pulse-height fluctuations, and the arrival time distribution of the electrons.

The fluctuations of the electron arrival times are discussed in detail in Sect. 7.4.
For long electron drift distances the diffusion effect dominates and the average elec-
tron arrival time gives the best time measurement. For short drift distances, the
primary ionization fluctuations together with effects such as track inclination and
path length variations dominate and the first arriving electrons show the smallest
arrival time fluctuations. Mathematically, the optimum time measurement would be
achieved by recording the arrival time of each individual electron and performing
statistical analyses of the electron arrival time spectrum for each event. Clearly this
is not practical. With realistic front-end electronics we can approximately realize
some effective weighting of the arrival times and we can choose whether the time
information should be given by the first electrons or some effective average of sev-
eral arriving electrons.

There are several ways of extracting the time information from the signal. We can
record the signal shape by sampling the signal at regular intervals and find the time,
e.g., by fitting the known average pulse shape to the signal as shown in Fig. 6.44a.
This requires of course the recording of multiple data points per signal, and it is only
useful in detectors where the signal shape does not vary significantly from event to
event. In the following we discuss how to directly extract a single time value from
the signal by applying a discriminator, as shown in Fig. 6.44b. A discriminator is
a device that creates a square ‘logic’ output pulse when the input signal crosses a
certain applied threshold. The edge of the logic pulse can then be measured by a
suitable device, typically called a time to digital converter (TDC). For the discus-
sion of the individual contributions to the time resolution we need the following
expressions: the current signal i0(t) induced by a single ion moving from the wire
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Fig. 6.44 (a) Sampling of the signal in regular time intervals for extraction of time time informa-
tion. (b) Application of a discriminator to the signal where the time information is determined by
the threshold crossing time
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surface towards the cathode and the amplifier output signal v0(t) for such an input
pulse:

i0(t) =
I0

1+ t/t0
v0(t) = g

∫ t

0
h(t − t ′)i0(t ′)dt ′. (6.147)

From Fig. 6.16 and Eq. (6.44) we know that the peak v0p and the peak time Tp of
v0(t) are approximately given by

v0p ≈ gI0t0 ln(1+ tp/2t0) Tp ≈ tp (6.148)

for both the unipolar and the bipolar shaper.

6.5.1 Influence of Electronics Noise on Time Resolution

In order to isolate the effect of electronic noise from chamber intrinsic fluctuations
we first assume that m electrons arrive at the wire at exactly the same time and that
all electrons experience the same avalanche multiplication G. The induced current,
the output signal and the peak of the output signal are then

i(t) = mGi0(t) v(t) = mGv0(t) vp ≈ gmGI0t0 ln(1+ tp/2t0) (6.149)

Applying a discriminator with a threshold vT to the amplifier output signal results
in a measured time tT which, in the absence of electronic noise, is strictly related to
the arrival time of the electrons (Fig. 6.45). If electronic noise with an r.m.s of σv

is superimposed on the output signal v(t), the edge time of the discriminator output
will vary, as illustrated in Fig. 6.46a. From the figure it is evident that the r.m.s. of
the discriminator output time jitter is

σt =
σv

k
=

gENC
k

k = v′(tT ), (6.150)

where k is the slope of v(t) at the threshold level. The slope k is proportional to
vp/Tp, so we have

Fig. 6.45 Definition of the
slope k at the threshold
crossing, the signal peak time
Tp, and the signal peak vp
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Fig. 6.46 (a) Electronic noise resulting in time jitter. (b) Dependence of σt on the amplifier peaking
time for a cathode readout channel and the parameters Cd = 20 pF, Rp = 10 kΩ , Rs = 150Ω , I0t0 =
e0/2ln(100),m = 10,G = 104, t0 = 1 ns, c1 = 2, unipolar shaper with n = 4

k ∝
vp

Tp
= c1

gmG I0t0 ln(1+ tp/2t0)
tp

σt =
tp ENC

c1mG I0t0 ln(1+ tp/2t0)
, (6.151)

where c1 is a constant with a value of c1 ≈ 1.5− 2.5. For faster signal rise times,
i.e., for smaller values of tp, the time jitter σt is reduced. We must, however, keep
in mind that the ENC also depends on the amplifier peaking time tp as given by
Eq. (6.115). Neglecting 1/ f noise we found ENC(tp) =

√
A/tp +Btp for a typical

cathode pad readout channel. Thus, for the time jitter we get

σt(tp) =
tp
√

A/tp +Btp

c1mG I0t0 ln(1+ tp/2t0)
A = 4kT RsC

2
dKs B = 4kT Kp/Rp. (6.152)

For small values of tp we find σt ∝ 1/
√

tp; for large values of tp the expression

increases as t3/2
p / ln tp. We therefore have an amplifier peaking time tp for which the

slope-to-noise ratio σv/k and, therefore, the time jitter σt become minimal. It can
be shown that the above expression has a minimum at tp ≤ 8t0 for any choice of
parameters. Figure 6.46b shows an example of the time jitter versus peaking time
for some typical parameters of a cathode channel.

Formally, the problem of minimizing the noise-to-slope ratio, or maximizing the
slope-to-noise ratio, can be studied in the same way as the question of the maximum
achievable signal-to-noise ratio treated earlier. The formulation of the problem is the
following: A signal F(iω) with a superimposed noise of power spectrum w(ω) is
processed by an amplifier with transfer function H(iω). Which transfer function
H(iω) maximizes the slope to noise ratio?

The slope of the amplifier output signal g(t) is dg(t)/dt = g′(t), which in the
frequency domain corresponds to a multiplication of G(iω) with iω . The slope-to-
noise ratio is

(
k
σ

)2

=
(

g′(tm)
σ

)2

=
1
π

(∫ ∞
−∞ iωF(iω)H(iω)eiωtm dω

)2

∫ ∞
−∞ w(ω)|H(iω)|2 dω

. (6.153)
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Proceeding as before we find the maximum achievable slope-to-noise ratio

(
k
σ

)2

≤ 2
π

∫ ∞

0

|ωF(iω)|2
w(ω)

dω (6.154)

with the optimum transfer function H(iω) and the output signal G(iω) being

H(iω) = iω
F∗(iω)
w(ω)

e−iωtm G(iω) = iω
|F(iω)|2

w(ω)
e−itmω . (6.155)

We realize that H(iω) and G(iω) differ only by the factor iω from the filters op-
timizing the signal-to-noise ratio that we found earlier. Since a multiplication with
iω in the frequency domain corresponds to the derivative in the time domain we can
conclude:

For a given signal f (t) and noise power spectrum w(ω), the amplifier delta
response that maximizes the slope-to-noise ratio is equal to the derivative of the
amplifier delta response that maximizes the signal-to-noise ratio.

Since the amplifier output signal for maximizing the signal-to-noise ratio is sym-
metric around t = 0, the amplifier output signal optimizing the slope-to-noise ratio
is antisymmetric around zero and the maximum slope-to-noise ratio is found at the
zero crossing timer of the signal (Fig. 6.47).

6.5.2 Influence of Pulse-Height Fluctuations on Time Resolution

We now consider the same situation as before, where m electrons arrive at the same
time at the sense wire, but we let the number m fluctuate from event to event accord-
ing to a distribution p(m) with an average of m and an r.m.s. of σm (Fig. 6.48a).
Although all the electrons arrive at the same time, we find different threshold
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Fig. 6.47 Example for the output signal of two optimum filters. The symmetric curve is the output
signal for a filter that maximizes the signal-to-noise ratio. The antisymmetric curve is the output of
a filter that maximizes the slope-to-noise ratio. The maximum slope-to-noise ratio is found at the
zero crossing. The delta response of the filter that maximizes the slope-to-noise ratio is equal to
the time derivative of the delta response for the filter that maximizes the signal-to-noise ratio. The
same is true for the output signals of the two filters
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Fig. 6.48 (a) Variations of the pulse height result in different threshold crossing times. The effect
is called ‘time walk’. (b) The zero crossing time of a bipolar pulse is independent of the pulse
height

crossing times owing to the pulse-height variations of the signal, an effect that is
called ‘time walk’. The threshold crossing time and its variance are

tT (m) =
vT

k(m)
σt ≈ σm

dtT (m)
dm

|m=m =
tp vT

c1mGI0t0 ln(1+ tp/2t0)

(σm

m

)
.

(6.156)
We see that the time walk decreases linearly with the threshold and the peaking
time and we therefore want fast electronics and the lowest possible threshold for
achieving the best time resolution. However, the lowest possible threshold is again
determined by the noise. The frequency fT of the noise threshold crossings for a
threshold vT is given by

fT = fzero e−v2
T /2σ2

v , (6.157)

where fzero is the number of zero crossings from Eq. (6.83) [RIC 44]. Setting the
threshold vT to 1,2,3,4,5 times the noise r.m.s. results in a threshold crossing fre-
quency of 0.6,0.14,0.01,3.3×10−4,3.7×10−6 times fzero. With fzero being in the
range of 10–100 MHz we have to set the threshold vT to at least five times the noise
r.m.s. in order to arrive at a noise count rate of less than 100 Hz. We use vT = 5σv

in the following. The discriminator threshold vT is typically expressed as a charge
according to vT = gQT in order to arrive at expressions independent of the ampli-
fier sensitivity. The amplifier output noise is σv = gENC, and we therefore have a
threshold of QT = 5ENC:

σt =
tp 5
√

A/tp +Btp

c1mGI0t0 ln(1+ tp/2t0)

(σm

m

)
. (6.158)

This expression is equal to the expression for the time jitter up to a factor 5σm/m.
Therefore the peaking time that minimizes the jitter due to electronic noise also
minimizes the jitter due to pulse-height variations. The combined effect of electronic
noise and pulse-height fluctuations becomes

σt =
√

σ2
jitter +σ2

walk =

√
1+
(

5σm

m

)2 tp
√

A/tp +Btp

c1mGI0t0 ln(1+ tp/2t0)
. (6.159)
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If the relative pulse-height variations σm/m are greater than one, which is usually
the case in wire chambers, the time resolution is dominated by the pulse-height
variations and not by the jitter from electronic noise. On the other hand, it is the
noise that sets the lower limit on the threshold level, so it is the noise alone that
determines the time resolution owing to jitter and walk.

There are numerous ways of eliminating this pulse-height dependence of the
threshold crossing time. One can, for instance, exploit the fact the zero crossing
time of a bipolar-shaped pulse is independent of the signal amplitude, which follows
directly from the linearity of the system, as shown in Fig. 6.48b. Another possibility
is the use of a so-called constant fraction discriminator that uses a threshold which
is always set to a certain fraction of the signal peak. These techniques are applicable
when the arrival time spread of the electrons is negligible compared to noise and
pulse-height variation effects. In the next section we investigate how variation in the
electron arrival time influences the time resolution.

6.5.3 Influence of Electron Arrival Time Fluctuations
on Time Resolution

In the previous section we assumed that the number of electrons arriving at the wire
varies from event to event, but that all the electrons arrive at the same time. Now we
include the effect that the m individual electrons arrive at different times t1, t2 . . . .tm.
The arrival times of the electrons as well as the number of electrons m fluctuate from
event to event. In Sect. 7.4 it is shown that the average electron arrival time gives
the best timing only when the diffusion dominates the arrival spread, as for distant
tracks in a TPC.

For short drift distances, the primary ionization fluctuations together with effects
such as track inclination and path length variations dominate, and the first arriving
electrons show the smallest arrival time fluctuations. For geometries like the drift
tube, the average electron arrival time shows a very large r.m.s. even for long drift
distances because the last arriving electrons always originate close to the tube wall
and therefore have no correlation with the drift distance (Fig. 6.49). To study the
effect of the arrival time spread we first investigate the bipolar shaping scheme,

Fig. 6.49 Electron drift lines in a drift tube. The distance of the track from the wire is determined
by the first arriving electrons. The last arriving electrons originate from the tube wall and have no
correlation with the track distance
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Fig. 6.50 Pulses from three electrons arriving at the wire at different times. The solid lines show
the pulses of the individual electrons; the dotted lines correspond to the sum of the pulses giv-
ing the measured chamber signal. Parts (a) and (b) show the bipolar-shaped signals where the
time measurement is given by the zero crossing of the chamber signal. Parts (c) and (d) show
the unipolar-shaped signals where the time measurement is given by the threshold crossing of the
chamber signal. The two schemes have distinctly different timing properties

where the zero crossing of the signal determines the measurement time. Figure 6.50a
shows the signals from three individual electrons arriving at different times and the
resulting chamber signal which is the sum of the individual electron signals. Around
the zero crossing the electron signals can be approximated by a straight line with a
slope −k (Fig. 6.50b), and the individual electron signals vi(t) and the resulting
signal v(t) can be approximated by

vi(t) = −k(t − ti) v(t) =
m

∑
i=1

vi(t) = −k mt − k
m

∑
i=1

ti. (6.160)

The zero crossing time tT of the signal v(t) is

v(t) = 0 → tT =
1
m

m

∑
i=1

ti = t (6.161)

and equal to the average arrival time of the m electrons. This scheme is therefore
applicable for the ‘diffusion dominated’ cases mentioned above.

If we want the nth electron to give the timing information we can imagine an
amplifier that produces a step function output signal of amplitude v0 for a single
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electron. The step functions of the individual arriving electrons would therefore pile
up and by setting the threshold to vT = nv0 we would measure the arrival time of the
nth electron. However, true step function requires an amplifier of infinite bandwidth,
and a realistic step function will take a certain time to rise from zero to v0. This time
must be shorter than the time between arriving electrons such that the pulses are
really piling up. Since the time between the first arriving electrons is typically much
less than a nanosecond, the bandwidth of such an amplifier must be extremely broad,
and the corresponding large noise might not allow a threshold that is low enough to
record the early electrons. In some rare cases this might still be a viable option.
Typically the amplifier peaking time is much longer than the time intervals between
arriving electrons and it is not the pulse heights but the slopes of the individual
electrons that pile up as shown next.

Figure 6.50c shows the signals from three individual electrons and the resulting
chamber signal. The time information is given by the threshold crossing time of the
leading edge of the chamber signal. The signals vi(t) from the individual electrons
can again be approximated by ‘straight lines’, as indicated in Fig. 6.50d, but in
contrast to the bipolar shape from before, these straight lines do not cross the zero
line, but start from zero at t = ti. This is illustrated in Fig. 6.51. A single electron
arriving at time ti produces the signal

vi(t) = k(t − ti)Θ(t − ti) v(t) =
m

∑
i=1

k(t − ti)Θ(t − ti). (6.162)

The chamber signal is therefore

v(t) = 0 t < t1

v(t) = k(t − t1) t1 < t < t2

v(t) = k(t − t1)+ k(t − t2) t2 < t < t3

etc.

(6.163)

Fig. 6.51 Four single
electrons arriving at different
times and producing signals
with slope k. The sum of the
individual signals gives the
chamber signal, which
changes the slope by k
whenever a new electron
arrives
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and in general we get

v(t) =
n

∑
i=1

k(t − ti) = k nt − k
n

∑
i=1

ti tn < t < tn+1. (6.164)

Whenever a new electron arrives the slope changes by k, and after the arrival of the
nth electron the signal slope is ks = nk. The threshold crossing time tT is

v(t) = vT → tT =
1
n

n

∑
i=1

ti +
vT

kn
= t<n +

vT

kn
if tn < tT < tn+1. (6.165)

We see that the threshold crossing time is equal to the average arrival time of the n
electrons that arrived before the threshold crossing plus another term that is inversely
proportional to n. Figure 6.51 shows an example in which four electrons arrive at
times t1, t2, t3, and t4. The chamber signal crosses the threshold before the arrival of
the fourth electron, so we have n = 3 and the threshold crossing time is

tT =
1
3
(t1 + t2 + t3)+

vT

3k
. (6.166)

If all the electrons arrive at the same time t = 0 we are left with only the second
term, which is equal to the expression for the time walk discussed in the previous
section. We can therefore state that the first term is due to the electron arrival time
spread and the second term to the varying number of electrons that contribute to the
signal at the threshold crossing time. However, the two expressions correlate in a
complex way.

If we want to explicitly calculate the threshold crossing time distribution and its
r.m.s., it is not sufficient to know the average and r.m.s of the arrival distribution for
the nth electron. The threshold crossing time depends on the arrival times of all n
electrons, so we need the probability density

P(t1, t2, t3 . . .)dt1dt2dt3 . . . , (6.167)

which gives the probability that the first electron arrives in the time interval t1, t1 +
dt1, the second arrives in the time interval t2, t2 +dt2, etc. The distribution P(t1, t2 . . .)
is typically generated with a Monte Carlo simulation program. Instead of finding an
analytic parametrization of the Monte Carlo generated distributions and evaluating
the integrals of the probability distribution it is much easier to record the arrival
time pattern t1, . . .tm for each Monte Carlo event and to find the chamber signal by
superimposing the single-electron pulse v0(t) according to

v(t) =
m

∑
i=1

v0(t − ti). (6.168)

By adding the expected noise signal to v(t) we find a set of pulses from which
we can calculate the threshold crossing times and therefore the time r.m.s. This
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procedure is very fast and by varying the threshold and electronic parameters it is a
straightforward task to find the optimum electronic parameters.

We can, on the other hand, get a good qualitative idea about the optimum elec-
tronic parameters. If we assume that the first electron arrives at t = 0 and the
following electrons arrive at regular time intervals Δ t, the chamber signal v(t)
becomes

v(t) = ∑
i

k(t − iΔ t)Θ(t − iΔ t) ≈ kt2

2Δ t
. (6.169)

The threshold crossing time tT and the number of electrons n having arrived at the
wire before tT are

tT ≈
√

2vT Δ t
k

n ≈ tT
Δ t

=

√
2vT

kΔ t
. (6.170)

If the electrons are separated by 2Δ t instead of Δ t the threshold crossing time is a
factor

√
2 later. The two ‘events’ with an electron separation Δ t and 2Δ t are shown

in Fig. 6.52. The time difference Δ tT between the two threshold crossings for the
two signals is

Δ tT = (
√

2−1)

√
2vT Δ t

k
. (6.171)

The variation of the threshold crossing time therefore decreases for lower threshold
and large slope (faster electronics) as was the case for pulse height fluctuations and
time walk. The lower threshold limit is again determined by the noise level. The
effects of pulse-height variation, discussed in the previous section, and the arrival
time fluctuations cannot be separated because they are highly correlated. A larger
primary ionization will also result in shorter time intervals between arriving elec-
trons. The only effect that can be added in square is the jitter from electronic noise
that is independent of the electron statistics.

On the one hand, lowering the threshold vT and increasing the signal slope k
(broader bandwidth, i.e., smaller peaking time) will reduce the effect of arrival time
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Fig. 6.52 Two signals where the electrons arrive at the wire at regular time intervals Δ t and 2Δ t,
respectively
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fluctuations and related pulse-height fluctuations. On the other hand, a broader band-
width will increase the noise and a lower threshold will increase the noise jitter
because of the parabolic shape of the signal. The compromise between these two
tendencies will define the optimum amplifier peaking time, which will again be of
the order of a few times t0.

Finally we note that the slope of the signal at the threshold crossing time ks = nk
measures the number of electrons that have contributed to the signal, and by using
this information we can improve the time resolution. The slope can, for example,
be measured by a second threshold (Fig. 6.52) or by a device that measures the
signal charge in a short time interval following the threshold crossing time. This
technique is known as amplitude and rise time compensation and allows extraction
of the optimum time information from the signal.

6.6 Three Examples of Modern Drift Chamber Electronics

In this last section we present some front-end electronics examples that are being
used in large detector systems. We discuss an amplifier for time measurement used at
rates up to 15 MHz, an amplifier for charge measurement in a cathode strip chamber,
and a front-end system for a TPC.

6.6.1 The ASDBLR Front-end Electronics

The ASDBLR (amplifier shaper discriminator baseline restorer) chip [BEN 96] is an
eight-channel front-end chip developed for readout of the ATLAS [ATL 94] transi-
tion radiation tracker [AKE 04]. The chip is implemented in a radiation hard bipolar
process. The tracker consists of almost half a million drift tubes of 4 mm diame-
ter with a 30-μm-diameter anode wire. A xenon-based gas mixture at a gas gain
of ≈ 2× 104 is used. The goal is a spatial resolution of better than 150 μm at ex-
treme rates of up to 15 MHz. To cope with this high rate, unipolar signal shaping
was chosen. The ASDBLR circuit is based on a front-end described in [FIS 85], and
the equivalent block diagram is equal to the one shown in Fig. 6.27 top. It consists
of a large bandwidth preamplifier with 1 ns rise time followed by a unipolar shaper
(n = 3) that provides a peaking time of tp = 8ns. The preamp input impedance of
Rin = 295Ω is matched to the characteristic impedance of the drift tube, which rep-
resents a capacitance of CD ≈ 12pF. A double pole-zero network cancels the signal
tail. In order to provide the baseline stability at the very high rates, the shaper is
followed by a fast (nonlinear) baseline restoration circuit using diodes. For very
small signals, the BLR acts like a CR differentiation circuit and produces a bipolar
output. As the shaper signals grow in magnitude, the exponential behaviour of the
diodes causes the undershoot to rise logarithmically with the pulse height, which
results in a unipolar signal shape. With this signal processing chain, the return to
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baseline is 30 ns for a vp/g = 2-fC pulse and 60 ns for a vp/g = 200-fC pulse. The
achieved ENC with attached drift tube is approximately 2300 electrons. The sen-
sitivity of g = 20 mV/fC provides a full-scale linear range for pulse heights from
0 to vp/g = 200 fC. The last circuit element is a discriminator with two thresholds
providing the leading edge time (low threshold) and the identification of an X-ray
photon hit (high threshold). A single-wire resolution of 100 μm and efficiency of
80% at low rate is achieved. At a rate of 17 MHz, the resolution is 120 μm and the
efficiency is 50% [AKE 04].

6.6.2 The ATLAS CSC Front-end Electronics

The ATLAS CSC fronted chip [OCO 99][JUN 05] is designed for readout of the
ATLAS cathode strip chambers [BEN 95]. These chambers measure muon tracks
with an accuracy of ≈ 50 μm by using charge interpolation of cathode strips with a
pitch of 5.08 mm. The chambers are multiwire proportional chambers with a wire
pitch and wire-to-cathode distance of 2.54 mm. The gas used is an Ar/CO2 mixture
operated at a gas gain of 2× 104. For a pitch of 5 mm and the specified position
resolution of 50 μm, a signal-to-noise ratio of about 150 is required. This leads to a
specification for an ENC of less than 2500 electrons for the chosen operating point.
The cathode strip capacitance ranges from 50 to 100 pF.

The front-end electronics developed for this detector consists of a bipolar shaper
with a peaking time of 75 ns, resulting in a total pulse length of about 300 ns. This
number is a compromise between noise performance and the inefficiency at the
highest expected rates of about 600 kHz. This bipolar shaper is not the one described
in the previous sections, but a shaper with one real pole and six complex poles,
called a seventh- order complex Gaussian filter [OHK 76]. It has the advantage of a
more symmetric response compared to the bipolar shaper realized by an equivalent
number of real coincident poles and having the same pulse-width. The achieved
noise performance is 1140+17.6 e−/pF. The sensitivity is 3.8 mV/fC, which allows
a linear range of 450 fC. A single chip of 3.29×5.79 mm size contains 25 channels
and the power dissipation amounts to 32.5 mW/channel. The output signals are then
sampled at a 20 MHz rate and readout on a level 1 trigger to a 12 bit analog to
digital converter (ADC).

6.6.3 The PASA and ALTRO Electronics for the ALICE TPC

The PASA (preamplifier shaper) chip together with ALTRO (alice TPC readout)
chip [MUS 03] form the front-end of the time projection chamber for the ALICE
[ALI 95] [APP 99] experiment. This ALICE TPC consists of a cylindrical gas vol-
ume of about 90 m3 under a uniform electrostatic field and a drift distance of up
to 2.5 m. At the endplates, multiwire proportional chambers provide a readout by
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means of a cathode plane segmented into about 6× 105 pads. These pads are con-
nected to the PASA chip, a 16-channel amplifier chip providing a delta response
with a peaking time of tp ≈ 150 ns and a full width at half maximum of about 200 ns.
The peaking time is realized by two so-called T-bridge second-order shapers result-
ing in two pairs of real poles. The transfer function is, however, very similar to an
n = 4 unipolar shaper. The diffusion of the gas used is quoted as 220 μm/

√
cm, so a

diffusion of σ = 2.2 mm at a drift distance of 100 cm and σ = 3.5 mm at a drift dis-
tance at 250 cm is expected. With a drift velocity of 28.3 μm/ns this corresponds to
a FWHM of the arriving electron cloud of 180 and 290 ns. The choice of 200 ns for
the FWHM of the shaper is therefore a compromise in terms of optimum signal-to-
noise ratio and pulse width. The ENC of the PASA chip is < 1000 electrons in order
to allow a signal-to-noise ratio of 30 at the specified working point. The sensitivity
is g = 12 mV/fC with a linear range of 2 V.

The signal from the PASA is then fed into the ALTRO chip [BOS 03], which
integrates 16 channels, each consisting of a 10-bit, 10 MS/s ADC, followed by a
programmable digital baseline subtraction and tail cancellation filter, a zero suppres-
sion unit, and a multi-event buffer. All this functionality is contained in an 8×8mm
CMOS chip. The tail cancellation filter can be programmed to represent any fourth-
order filter, i.e., any transfer function consisting of a fourth-order polynomial in the
numerator and the denominator. The advantage of such an approach is evident: The
signal tail cancellation time constants do not have to be hardwired into the front-end
electronic chip but are fully programmable, which provides maximum flexibility.
Clearly, the integration of the front-end chip in the ALTRO is a desirable next step.

We conclude this section by noting that the extreme miniaturization of micro-
electronic components, together with the reduced power consumption, has allowed
the placement of a large number of electronic channels very close to the detector,
which makes the systems very compact and economic.
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Chapter 7
Coordinate Measurement and Fundamental
Limits of Accuracy

7.1 Methods of Coordinate Measurement

After the passage of a charged particle through the sensitive gas volume, the elec-
trons produced in the ionization process along a trajectory segment drift toward the
sense wire, where they are collected and amplified in avalanches. There are essen-
tially four different methods to determine particle coordinates in drift chambers:

1. Measurement of the drift time. Using the known drift velocity of the ionization
electrons along their drift trajectory, this determines the distance along the drift
trajectory between wire and track.

2. Measurement of the pulse-height ratios on pick-up electrodes (strips, “pads”,
wires) near the sense-wire avalanche. With electrode response known this de-
termines the coordinate of the avalanche between the pick-up electrodes. If the
drift trajectory is known, the corresponding coordinate is determined. In this way
the coordinate along the sense wire is measurable.

3. Measurement of the pulse-height ratios at the two ends of a sense wire (charge
division). The position of the avalanche along the wire is determined using the
known damping of the pulse as it propagates along the wire.

4. Measurement of the difference of arrival times at the two ends of a sense wire
(time difference). This has been used for the same purpose, applying the known
propagation time of the signal on the wire.

Of these, methods 3 and 4 measure the coordinate along the wire direction and
method 1 measures the coordinate in the drift direction. The coordinate direction
of method 2, finally, is given by the arrangement of the pick-up electrodes. A com-
bination of method 1 with one of the others allows a three-dimensional position
measurement of the track segment to be made, provided the drift trajectories are
known.

Methods 1 and 2 are the most powerful in terms of the achievable accuracy be-
cause it turns out that the electronic measurement of the time and of the pulse-height
ratio on neighbouring electrodes can often be made better than the fundamental lim-
its imposed by the properties of the ionization that arrives on the wire.

W. Blum et al., Particle Detection with Drift Chambers, 251
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Comparing methods 2 and 3 we notice that in both cases the coordinate is ob-
tained from a known function of a pulse-height ratio times a length: the distance D
between the pick-up electrodes in method 2 and the wire length L in the other case.
It is clear that the response (i.e. the change in pulse-height ratio per unit length of
avalanche displacement) with method 2 is better than the response with method 3
by the order of magnitude of the ratio L/D. The designer of the chamber has to pay
for this advantage with a correspondingly larger number of electronic channels.

Comparing methods 1 and 4, both based on a measurement of time, method 4
is less favourable because the response (i.e. the change in measured time per unit
length of coordinate displacement) is inversely proportional to the velocity involved,
this being the drift velocity u in the gas for method 1 and the signal propagation
velocity v (a good fraction of the speed of the light) along the sense wire for method
4. Therefore the response with method 1 is better than the response with method 4
by the order of magnitude of the ratio v/u, which has typical values of 103 to 104.

It is not our goal to review here the various technical aspects of these methods,
such as pulse propagation, amplifier noise or discriminator behaviour. Our interest is
focussed on the fundamental processes that create limitations which cannot be over-
come by technical improvements. In methods 1 and 2 we have techniques to measure
the coordinate such that the error resulting from imperfections of the electronics can
be made much smaller than that deriving from the fundamental processes.

If all the technical problems have been solved, which means that the wire po-
sitions are under control, the drift-velocity field is known well enough (implying
the absence of unknown field distortions of the electric and magnetic fields) and if
the electronics is capable of measuring the drift time or the pulse-height ratio of the
induced signals with sufficient accuracy, then we are ultimately faced with the statis-
tical fluctuations of the finite number of electrons involved in the measuring process.
These fluctuations are strongly influenced by the clustering of the ionization pro-
cess itself. They are the fundamental limitation of any coordinate measurement in
drift chambers and become effective because of the presence of mechanisms which
spread the ionization cloud as it reaches the wire. In this chapter we will study the
most important mechanisms of spread: the diffusion in the drift toward the sense
wire, the drift path, and time variations due to the inhomogeneous electric field near
the wire and those due to an angle the track might have with the wire. In the pres-
ence of a magnetic field, the cylindrical electric field near the wire can combine with
the magnetic field and create a spread of ionization as if the track had an angle with
the wire.

The problem of accuracy can be described in the following terms. The ionization
electrons from the track element in question arrive at the wires; they are spread
both in arrival time and along the wires. What are the best estimates for the two
coordinates and what is their statistical variation?

In order to understand this better, we will first analyse the spreading on a single
wire and how it depends on the track angles, the wire geometry, the magnetic and
electric fields and the diffusion. Then we have to discuss how much we gain from
the fact that there is not one electron but many electrons arriving. Here the nature of
the ionization, which is clustered, plays a role.



7.2 Basic Formulae for a Single Wire 253

Anticipating the result of this chapter, we summarize the benefit of having many
electrons as follows. When diffusion is the main source of spreading, the increase in
accuracy is a function of the total number N of electrons, in the sense that the r.m.s.
measurement error decreases as 1/

√
N. When any of the other mechanisms is the

main source of spreading, the accuracy is a function only of Neff, a number which is
usually much smaller than N and depends on the length of the track segment as well
as on diffusion.

Recently another basic problem has been discovered which, in principle, is ca-
pable of limiting the measuring accuracy of drift chambers. Long wires may be
excited to vibrations by the unavoidable momentum transfer from the avalanches to
the wire. Coordinate measurements become less accurate to the extent that the wire
position is unknown. Although it is only in special circumstances large enough to
bother, the phenomenon is a fundamental limitation of coordinate measurements. It
will be treated in Sect. 7.5.

7.2 Basic Formulae for a Single Wire

For the coordinate measurements along the wire direction and along the drift direc-
tion there are some common aspects that we want to underline. In both cases the
accuracy is limited by a track angle which spreads the ionization at the wire and by
diffusion which amplifies this spread.

The most general orientation a track might have with the wire plane is given
by two angles θ and α . For the measurement along the wire, only the angle θ
between the track projected onto the wire plane and the wire is relevant, and for the
measurement along the drift direction it is the angle α between the track projected
onto the plane orthogonal to the wire and the wire plane.

We consider the simplified scheme of a drift chamber given in Figs. 7.1 and 7.2.
The sense wire is parallel to the x axis and contains the point of origin y = z = 0.
We show two regions: the “drift region”, where the ionization electrons drift and

Fig. 7.1 Scheme of a drift cell. For a study of the ionization spread on the wire, we consider a
track parallel to the x–y plane
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Fig. 7.2 Scheme of a drift cell. For a study of the spread of arrival times we consider a track
parallel to the z−y plane

diffuse, and a “wire region” where they are collected on the wire. The drift-velocity
vector is assumed constant in the drift region and the diffusion in the wire region is
neglected.

In Fig. 7.1 we have drawn the case relevant for the coordinate along the wire,
where the track may be assumed to be parallel to the x–y plane. In Fig. 7.2 we have
drawn a different track, parallel to the x–z plane, relevant for the coordinate along
the drift direction. In the following we discuss those aspects of the problem that are
common to the determination of both coordinates.

The ionization clusters are randomly distributed along the particle trajectory with
uniform distribution. An electron is collected by the wire if it arrives at −b/2 < y <
b/2 at the entrance of the wire region after its drift and its random diffusion. Because
of diffusion, electrons produced at y <−b/2 or at y > b/2 may also be collected by
the wire and contribute to the measurement.

Since we neglect the diffusion in the wire region, the arrival position and time
of one electron on the wire are completely determined by its arrival coordinates and
time at the entrance to the wire region. We discuss first the distribution of these
variables in the case of a single electron, and later we treat the statistical problems
connected with the ensemble of collected electrons.

7.2.1 Frequency Distribution of the Coordinates of a Single
Electron at the Entrance to the Wire Region

This distribution is determined by the trajectory of the particle and by the random
diffusion of the drifting electron in the drift region.

We begin with the particular case shown in Fig. 7.1: a charged particle parallel to
the x–y plane produces ionization clusters at coordinates x = x0 + ssinθ ,y = scosθ
and z = z0, where s is the coordinate along the track and θ is the angle between the
perpendicular to the wire and the projection of the trajectory on the wire plane.
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The arrival position of an electron produced at coordinate s along the track is dis-
tributed according to a Gaussian diffusion around the production coordinate, while
s is uniformly distributed along the trajectory. Introducing the symbol G,

G(x|〈x〉,σ) =
1√

2πσ
exp

(
− (x−〈x〉)2

2σ2

)
,

to denote the generic Gaussian function of average 〈x〉 and r.m.s. σ we can write
down the frequency distribution of the arrival positions and time of the electron at
the entrance of the wire region (z = zw) as

F(x,y, t)dxdydt =
dxdydt

R

+R/2∫

−R/2

ds G(x|x0 + ssinθ ,σx)

× G(y|scosθ ,σy)G(t|(z0 − zw)/u,σt) . (7.1)

Here σx,σy,σt = σz/u denote the diffusion r.m.s. in the three directions (in the
most general case we should introduce the diffusion tensor) and u is the drift velocity
assumed along z. R is the length of a track arbitrarily chosen so large that Rcosθ � b
and Rcosθ � σi(i = x,y,z). In the following we will always take the limit R → ∞.

This frequency distribution has been written assuming that just one ionization
electron is produced along the track segment R. This electron is collected by the
wire and contributes to the coordinate measurement only if its arrival position at the
entrance to the wire region satisfies the condition −b/2 < y < b/2. The probability
that this electron is collected by the wire is

+∞∫
−∞

dx

+∞∫
−∞

dt

+b/2∫

−b/2

dy F(x,y, t) =
b

Rcosθ
(7.2)

and is equal to the ratio between the length of the portion of the track between the
planes y = −b/2 and y = b/2 and R.

If we are interested in the measurement of the coordinate along the wire direction
(x) alone, the readout electronics will integrate electrons arriving at different times:
the probability distribution of the arrival positions at the entrance of the wire region
for the electrons that are collected by the wire is obtained integrating the distribution
F(x,y, t) given by (7.1) in the variable t and normalizing it using (7.2):

fx(x,y)dxdy = dx dy
cosθ

b

+R/2∫

−R/2

ds G(x|x0 + ssinθ ,σx)G(y|scosθ ,σy) . (7.3)

Assuming that the x coordinate on the wire is the same as at the entrance to the
wire region we can compute the average and the variance of the arrival position at
the wire as
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〈x〉 =

b/2∫

−b/2

dy

+∞∫
−∞

x fx(x,y)dx = x0 , (7.4)

〈x2〉−〈x〉2 = σ2
x +σ2

y tan2 θ +
b2

12
tan2 θ . (7.5)

The variance of x is the sum of three terms: the first two depend on diffusion,
the third is the projection of the track segment on the wire; this latter we call the
angular wire effect. The factor 1/12 that divides the square of the width b of the drift
cell comes from the variance of the uniform distribution of the electrons along the
track.

7.2.2 Frequency Distribution of the Arrival Time of a Single
Electron at the Entrance to the Wire Region

We now turn to the particular case shown in Fig. 7.2: a charged particle parallel to
the y–z plane produces ionization clusters at coordinates x = x0,y = scosα and z =
z0 + ssinα , where s is the coordinate along the track and α is the angle between the
perpendicular to the drift-velocity direction (z) and the projection of the trajectory
on the wire z–y plane.

The frequency distribution of the arrival positions and time of the electron at the
entrance of the wire region (z = zw) is

F(x,y, t)dxdydt =
dxdydt

R

+R/2∫

−R/2

dsG(x|x0 +σx)

× G(y|scosα,σy)G(t|(z0 + ssinα − zw)/u,σt) . (7.6)

If we are interested in the measurement of the coordinate along the drift direction
z alone, the readout electronics will not distinguish among electrons arriving at dif-
ferent wire positions: the probability distribution of the arrival time at the entrance
to the wire region for the electrons that are collected by the wire is obtained by inte-
grating the distribution given by (7.6) in the variable x and normalizing it using (7.2):

Fz(t,y)dtdy = dtdy
cosα

b

+R/2∫

−R/2

dsG(t|(z0 + ssinα − zw)/u,σt)

× G(y|scosα,σy) . (7.7)

Assuming for the moment that the arrival time on the wire is equal to the time
at the entrance to the wire region, plus the constant shift zw/u, we can compute the
average and the variance of the arrival time at the wire;
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〈t〉 =

b/2∫

−b/2

dy

+∞∫
−∞

t fz(t,y)dt = z0/u , (7.8)

〈t2〉−〈t〉2 = σ2
t +

σ2
y

u2 tan2 α +
b2

12u2 tan2 α . (7.9)

Comparing (7.3) and (7.7) we observe that one can obtain one distribution from
the other with the substitutions

fx ↔ fz ,

x ↔ z = tu ,

x0 ↔ z0 − zw ,

σx ↔ αz = σtu ,

θ ↔ α .

In the following, we discuss how the cluster fluctuations influence the resolution
in the coordinate measurement along the wire direction (x). This will be done using
the probability distribution (7.3) and assuming that the x coordinate at the wire is
the same as at the entrance of the wire region. Analogously, the same conclusions
can be drawn with regard to the coordinate measurement in the drift direction, using
the formal substitutions (7.10). Drift-path variations are introduced in Sect. 7.4.

7.2.3 Influence of the Cluster Fluctuations on the Resolution – the
Effective Number of Electrons

Up to this point we have calculated the average and the variance of the position x
of a single electron (see (7.4) and (7.5)). For the measurement of the coordinate we
average over all electrons that are collected by the wire in a given time interval,
defined by the readout electronics, and the variance of the coordinate measurement
will be reduced. As it turns out, this reduction is not given by a single factor. This is
because of the ionization clustering.

We measure the x coordinate averaging the arrival positions of N electrons:

XAV =
x1 + x2 + . . .+ xN

N
. (7.10)

The variance of XAV depends on the characteristics of the ionization process be-
cause the electrons are produced in clusters and therefore the x are, in general, not
independent.

Assume that the N electrons are grouped in M sets of n electrons, each set con-
taining the electrons that were produced in the same cluster and after drift and
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diffusion are collected by the wire:

M

∑
j=1

n j = N . (7.11)

In general not all the electrons produced in the same cluster are collected by the
wire because of the random diffusion along the drift path.

The variance of XAV is by definition

σ2
XAV

=
〈
X2

AV

〉
−〈XAV〉2 , (7.12)

where the average 〈 〉 is taken over the probability distribution fx:

〈XAV〉 = ∑〈xi〉
N

=

b/2∫

−b/2

dy

+∞∫
−∞

x fx(x,y)dx = x0 (7.13)

and 〈
X2

AV

〉
=

1
N2 ∑i j〈xix j〉 . (7.14)

The sum in the last equation contains three different kinds of terms; refer to
Table 7.1 for a graphical representation. When i = j then 〈xix j〉 = 〈x2〉. There are
N terms of this kind; they are marked by crosses in the table. When i �= j and the
electrons do not belong to the same cluster, then 〈xix j〉= 〈x〉2, because two different
ionization processes are not correlated. There are N2 −∑n2

j terms of this kind, they
are represented by the dots in the rectangular boxes of the table. When i �= j and the
electrons do belong to the same cluster (the dots in the square boxes), then xi and x j

are correlated. We define the average 〈xix j〉= 〈xx〉. There are ∑n2
j −N terms of this

kind.
Using (7.12–7.14) one finds that the variance is equal to

σ2
XAV

=
1
N

(〈x2〉−〈xx〉)+
∑n2

j

N2 (〈xx〉−〈x2〉) . (7.15)

Table 7.1 Classification of the pairs of all electrons from a track that were collected on one wire
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In the absence of diffusion, 〈xx〉 is equal to 〈x2〉 and the first term of (7.15) is zero,
so we obtain the result derived in Sect. 1.2, where the quantity ∑n2

j/N2 was defined
as 1/Neff. If all the clusters consisted of one electron, the term ∑n2

j/N2 there became
equal to 1/N and we obtained the standard formula of the variance of the mean.

We may therefore distinguish the following limiting cases of (7.15):

• Limit of no diffusion, using (7.5):

σ2
XAV

→ 1
Neff

(〈x2〉−〈x〉2) =
1

Neff

b2

12
tan2 θ . (7.16)

• Limit of no clustering, using (7.5) and σx = σy = σ :

σ2
XAV

→ 1
N

(〈x2〉−〈x〉2) =
1
N

(
σ2

cos2 θ
+

b2

12
tan2 θ

)
. (7.17)

• Limit θ = 0, in the presence of clustering:

σ2
XAV

→ σ
N

. (7.18)

In (7.16–7.18), Neff is the effective number and N is the total number of elec-
trons on the track segment delimited by the cell width; their values are θ -dependent
through the length of the track segment.

An analytical expression of the covariance 〈xx〉 in (7.15) is derived under certain
assumptions in the appendix to this chapter, resulting in formula (7.81) for σ2

XAV
.

This can be rewritten in the form

σ2
XAV

→ 1
N′

σ2

cos2 θ
+

1
N′

eff

b2

12
tan2 θ . (7.19)

where the quantities N′ and N′
eff depend on θ as well as on σ and b.

Let us first deal with the term proportional to (b2/12) tan2 θ . We may regard N′
eff

as the effective number of electrons that would cause the same fluctuation as the
combined action of ionization plus diffusion, thus extending the original meaning
of Neff defined in Sect. 1.2 and used in (7.16).

The quantity N′
eff, for which an analytic expression is given in the

appendix to this chapter, can also be calculated with a numerical simulation of the
ionization and diffusion process. In order to compute it as a function of the diffusion
parameter σ we evaluate the variance VAV of the average of the coordinates along
the track direction of those electrons that, after diffusion σ along the track direction,
are contained in a track segment of length l. We write

1
N′

eff

1
Neff(σ)

=
l2

12
1

VAV(σ)
. (7.20)

Figure 7.3 shows how Neff(σ) varies with diffusion. We have plotted on the ver-
tical axis the quantity
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Fig. 7.3 Declustering
through diffusion: effective
number of electrons divided
by the total number of
clusters, as a function of σ/l,
for two values of l. In the
Monte Carlo calculation the
cluster-size distribution of
Fig. 1.7 and a value of
1/λ = 2.7 clusters/mm were
used

Neff(σ)
λ
l

,

where the ratio λ/l is equal to the average number of clusters on the track segment
l (λ was defined in Sect. 1.1.1 as the mean distance between two clusters). There-
fore Neff(σ)λ/l is the ratio of the effective number of electrons over the number of
clusters in the track length l.

On the horizontal scale we have the diffusion expressed in units of the length
of the track segment σ/l. This is suggested by (7.81) and is a very natural choice
because the change of Neff(σ) is caused by electrons that have diffused so much
that they cross over from one track segment to the neighbouring one, thus breaking
the cluster correlation. It can therefore be expected that Neff(σ) goes up when σ ex-
ceeds some distance comparable to the length of the track segment, i.e. the distance
between the wires. And this is in fact what we see.

The curves in Fig. 7.3 where computed using the argon cluster-size distribution
of Fig. 1.7. At zero diffusion Neff(0) is only 0.3(l = 0.4cm) or 0.2 (l = 1cm) of
the number of clusters. We know from Fig. 1.19 that this number must go down
with increasing l. Now we switch on the diffusion, and before σ has reached half
the length l of the segment, Neff(σ) is as large as the number of clusters. For very
large σ/l all the clustering is destroyed by the diffusion, and Neff(σ) approaches the
total number N of electrons. The increase of Neff(σ) with σ/l was first observed in
a TPC and termed declustering through diffusion [BLU 86].

We notice that the wire angular term in (7.19) can be written in the following
way:

1
Neff(σ)

(b tanθ)2

12
=

1
Neff(σ)

1
12

(
b

cosθ

)2

sin2 θ . (7.21)

It represents the variance of the average of the position along the track direction of
the electrons sampled by the wire, projected onto the wire direction. The first term
is the variance of a flat distribution of width b/cosθ , which is the length of the track
segment sampled by the wire. The factor sin2 θ projects this variance onto the wire
direction.

After this discussion of N′
eff as contained in the second term of (7.19), we deal

now with the first term. The simple form into which we have cast the terms directly
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proportional to σ2 (cf. (7.81)) hides the complications in the symbol N′. Although it
is true that in the limiting cases of (7.17) and (7.18) N′ is exactly equal to N, the total
number of electrons on the track segment delimited by the cell width, N′ changes
as a function of θ ,σ and b so as to make the variance σ2

XAV
larger. The physical

cause of this is the rare larger clusters outside the cell that send some electrons via
diffusion to the edge of the cell, and more so when θ is large. We have two reasons
not to go into these details here. When we omit the primes in (7.19) the omissions
amount to less than 25% in the quantity σXAV (except in extreme cases). The omitted
parts, which pull measurements to one side in our cell, have a tendency to pull the
corresponding measurement in the neighbouring cell to the opposite side. Therefore
it is better to leave them out when combining several cells. The contributions of
several wires are discussed in Sects. 7.3 and 7.4.

In conclusion we simplify (7.19) to read

σ2
XAV

=
1
N

σ2

cos2 θ
+

1
Neff

b2

12
tan2 θ . (7.22)

It represents the square of the accuracy with which a track coordinate XAV (7.10)
can be measured along a single wire in the absence of a magnetic field.

7.3 Accuracy in the Measurement of the Coordinate
in or near the Wire Direction

7.3.1 Inclusion of a Magnetic Field Perpendicular to the Wire
Direction: the Wire E ××× B Effect

Drift chambers with precise measurements of the track coordinates along the wire
direction are often operated with a magnetic field perpendicular to the direction of
the wires. With this configuration one can obtain a precise determination of the cur-
vature induced on the particle trajectory by the magnetic field, and the momentum
of the particle can be determined (see Chap. 8 for details).

The presence of a magnetic field perpendicular to the wire direction modifies the
angular wire term of the variance of the arrival position of the electrons (7.5). It
becomes asymmetric and, on average, larger because the track segment is projected
onto the wire in a more complicated way. The electrons that after their drift are
collected in the cylindrical field of the wire have to move transverse to the magnetic
field (Fig. 7.4). This produces an E × B force according to (2.6) and causes the
electrons to drift under an effective angle ψ toward the wire. The angle ψ is such
that tanψ = ωτ , where ω is the cyclotron frequency and τ is the time between two
electron collisions suitably averaged. Details have been treated in Sect. 2.1.

The arrival position xw of an electron entering the region close to the wire
with coordinates x and y is xw = x− y tanψ; the variance of xw on the frequency
distribution (7.3) is
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Fig. 7.4 (a) Directions of the
electric and magnetic fields in
the region close to the sense
wire. The magnetic field
points into the page. (b)
Direction of the drift velocity
of the electrons in this region
projected onto the x–y plane

〈x2
w〉−〈xw〉2 =

σ2

cos2 θ
+

b2

12
(tanθ − tanψ)2 . (7.23)

The electrons produced by a track at θ = 0 are spread over a region b tanψ , and
those of a track at an arbitrary angle are smeared over a distance b(tanθ − tanψ).
The width of the charge distribution on the wire has a minimum at θ = ψ and not at
θ = 0.

This effect was discovered with the TRIUMF-TPC [HAR 84] and is typically the
most important limitation of the measuring accuracy in all TPC-like detectors using
a gas with high values of ωτ . In the TRIUMF-TPC the angle ψ was 29◦, and 32◦ in
the ALEPH TPC in standard running conditions. The broadening of the avalanche
width has been systematically studied in [BLU 86].

Using (7.23) we can rewrite (7.22) to include this effect:

σ2
XAV

=
1
N

σ2

cos2 θ
+

1
Neff

b2

12
(tanθ − tanψ)2 . (7.24)

Equation (7.24) is the general expression for the accuracy σXAV with which a
track segment can be measured on one wire along the wire direction. Summa-
rizing our findings up to here, we see that this accuracy depends on the pro-
jected angle θ the track has with respect to the normal to the wire direction as
well as on the angle ψ of the wire E × B effect. Neff is roughly 6 for 1 cm of
argon NTP and is more accurately obtained in Figs. 7.3 and 1.19. The diffu-
sion term is characterized by the width σ of the single-electron diffusion trans-
verse to the drift and the total number N of electrons, typically 100/cm in argon
NTP.

The size and relative importance of the two terms in (7.24) depend on the electron
drift length L, because σ2 is proportional to L and Neff depends on L through the
declustering effect (Fig. 7.3). Also the angle θ has some influence on N and Neff as
the length of the track segment varies with θ . If one wants to be more specific, one
has to take into account the details of a particular chamber.
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7.3.2 Case Study of the Explicit Dependence of the Resolution
on L and θ

Writing (7.24) in the form

σ2
XAV

=
1
n0

(
C2L

bcosθ
+

b
12

(tanθ tanψ)2 cosθ
g(L)

)
(7.25)

we have introduced the L dependence of the diffusion and of Neff:

σ2 = C2L , (7.26)

Neff = Ng(L) , (7.27)

as well as the θ dependence of N:

N = n0b/cosθ . (7.28)

Here n0 is the number of collected electrons per unit track length. (We recall
that g(L) is not a universal function but depends to some extent on N,b
and θ .)

Figure 7.5a-c shows σ2
XAV

calculated as a function of L at θ = 0 for C2 = 3.4×
10−3 mm, ψ = 32◦ (corresponding to a gas mixture of 80% argon and 20% methane
in a field of 0.85 T), b = 4mm, n0 = 8.1electrons/mm. We notice that the resolu-
tion goes through a shallow minimum at small L and is dominated by diffusion at
large L.

Figure 7.6 shows σ2
XAV

as a function of the angle θ for two different values of L
and for the same choice of the other parameters.

Fig. 7.5a-c Variance of the
average arrival position as a
function of the drift length at
θ = 0 – the special case
described in the text. (a)
Contribution of the diffusion;
(b) contribution of the
angular wire effect; (c) sum
of the two
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Fig. 7.6 Variance of the
average arrival position of the
electrons as a function of the
angle θ – the special case
described in the text.
(a)L = 0, (b)L = 50cm

7.3.3 The General Situation – Contributions of Several Wires,
and the Angular Pad Effect

The most general situation is the one where the coordinate direction along the pad
row is inclined with respect to the wire direction, and several wires are located op-
posite the same cathode strips, as seen in Fig. 7.7. Apart from θ , the angle between
the track and the wire normal, and ψ , the effective angle of approach caused by the
wire E×B effect, we also have α , the angle between the normal to the direction of
the pad row and the track; all angles are measured in the wire plane. The angles θ
and α are the same when the pad row follows the wire direction.

Fig. 7.7 Scheme of a
chamber with cathode-strip
readout. The bold lines
indicate the arrival positions
of the electrons on the wire;
the dotted lines indicate the
direction of the drift velocity
in the region close to the
sense wires
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The signals induced in a cathode strip are from k wires, where
k = pad length h/wire pitch b.

These signals are added in the measuring process. We want to compute the achiev-
able accuracy. As the situation is quite complicated we wish to start with a simple
case. The basic statistical relation will be derived for the special geometry given by
α = 0, θ = 0; also we will assume σ = 0. Later on we will generalize our findings
step by step.

The simplified geometry is sketched in Fig. 7.8. The ionization clusters along the
track are redistributed onto the sense wires, where they occupy sections of length
b tanψ . The situation is quite similar to the one in Sect. 1.2.6, where we treated the
problem of charge localization along a track. The coordinate to be determined by
the pads in one measurement is

XAVP =
∑m1

i=1 xini +∑m2
i=m1+1 xini + . . .+∑mk

i=mk−1+1 xini(
∑mk

i=1 ni
)2 , (7.29)

where each xi is the position of a cluster with ni electrons; there are m1 clusters
on the first, and m j −m j−1 on the jth sense wire ( j = 1, . . . ,k). Averaging over the
positions xi – which are distributed between −(b/2) tanψ and +(b/2) tanψ – we
find for the average and the variance

〈XAVP〉 = 0

and

σ2
AVP =

〈
X2

AVP

〉
−〈XAVP〉2

=
b2 tan2 ψ

12
∑mk

i=1 n2
i(

∑mk
i=1 ni

)2 (7.30)

σ2
AVP =

b2 tan2 ψ
12

1
Neff(h)

(α = θ = σ = 0) .

Fig. 7.8 Track and sense
wires for (7.30)
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Here we have denoted by 1/Neff(h) the statistical factor which is equal to the sum
of the squared cluster size divided by the square of the summed cluster sizes, taken
over all the clusters on the piece of track that is delimited by the pad length h. Let us
repeat (cf. Sect. 1.2.9 that the effective number Neff is a measure of fluctuation which
is smaller than the number of clusters because of the fluctuations of the cluster size.
It is not proportional to h; for argon it scales according to Fig. 1.22. Comparing
Neff(b), the corresponding number that belongs to a wire cell, we have for that case

Neff(h) ∼ Neff(b)(h/b)0.54 .

For this reason the achievable accuracy of pads does not improve with the square
root but (for argon) more with the fourth root of the pad length.

In the next step we let θ and σ be different from zero, but keep σ 	 b and α = 0.
The geometry is sketched in Fig. 7.9. The angle θ the track makes with the wire nor-
mal has two consequences: it changes the length on the wire occupied by charges,
from b tan ψ to b(tanψ − tanθ), and it introduces the projection factor cosθ be-
tween this length and the coordinate direction. The diffusion, finally, contributes to
the variance the same term as in (7.22) but with two changes. Firstly, the projection
factor onto the coordinate direction is 1 in the present case. Secondly, N now repre-
sents the total number of electrons from the track segment delimited by h; we write
N(h), which is of course proportional to h. The variance of XAVP therefore assumes
the form

σ2
XAVP

=
σ2

N(h)
+

1
Neff(h)

b2

12
(tanψ − tanθ)2 cos2 θ(α = 0,σ 	 b). (7.31)

Next we let α assume a non-zero value. This has the consequence that the two
projection factors must be referred to the new coordinate direction, that is the dif-
fusion term receives in its denominator the factor cos2 α , and the projection factor
of the angular term changes into cos2(θ −α). The variance (7.31) of XAVP receives
another contribution, which describes the fluctuation of the position of the centre of

Fig. 7.9 Track and sense
wires for (7.31)
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charge along the track segment, because a non-zero angle α projects this fluctuation
onto the coordinate direction. The size of this term is proportional to the squared
length of the pad,

1
Neff

(h tanα)2

12
. (7.32)

This is the angular pad effect. We recognize the similarity with the corresponding
angular wire term in (7.22); in (7.32) the fluctuation is controlled by the effective
number of electrons on the track segment defined by the pad.

This contribution to the variance can be suppressed if the pulse height on the
relevant wires is recorded, because one way of looking at this fluctuation is that it
is caused by the differences in the charge deposited on the wires (see Fig. 7.10).
It has been demonstrated in practice [AME 83, BAR 82], that the measured track
position can be corrected using the wire pulse heights, leaving only a small residual
error.

Finally we have to lift the restriction that σ2 should be small compared to b2.
In order for declustering to occur, the diffusion must reach the value of a length
parameter which reorganizes the charges in such a way that the cluster correlation is
broken, thus making Neff larger. For the angular terms in (7.22) and (7.24) it was b
that set the scale whereas in the angular pad term (7.32) it is h that sets the scale. (It
is irrelevant on which wire the charge is collected – only new charges from outside
the pad region improve the cluster statistics.)

Although the declustering effect often does not play a decisive role in practical
drift chambers – because the diffusion is not large enough – we want to be specific
in distinguishing the respective scales of the declustering.

For this purpose we denote by

Neff

(
h,

σ
b

)

the effective number of electrons on the track segment delimited by h and declus-
tered by diffusion on the scale b. In this sense the variance of XAVP takes the form

σ2
AVP =

1
N(h)

σ2

cos2 α
+

b2(tanθ − tanψ)2 cos2(θ −α)
12Neff

(
h, σ

b

) +
(h2 −b2) tan2 α

12Neff
(
h, σ

h

) . (7.33)

Fig. 7.10 Displacement of
the measured coordinate
owing to charge fluctuations
between the sense wires that
contribute to a pad signal.
The large pulse height
collected by wire 2 moves the
centroid towards positive x
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This is the principal limit of the coordinate measuring accuracy using pads; θ ,ψ ,
and α were defined in Fig. 7.7. In the usual case of no declustering, the values of
Neff for argon can be taken from Fig. 1.22.

7.3.4 Consequences of (7.33) for the Construction of TPCs

The relative size of the three terms in (7.33) depends, firstly, on the diffusion of the
electrons during their drift. In the presence of a typical longitudinal magnetic field,
the magnetic anisotropy of diffusion will make the first term the smallest one on
average, for any practical choice of b and h.

In the usual case, a pad extends over several wires, and h is much larger than b;
therefore the third term will dominate even for a small α . The most critical coordi-
nate measurements are those for a determination of large track momenta on tracks
with a small curvature. The pad rows should therefore be oriented at right angles to
these critical tracks, so that, for them, α ≈ 0. For this reason, the ALEPH and the
DELPHI TPCs have circular pad rows.

With the choice of h the designer of the TPC wants to take advantage of the
fact that N(h) increases in proportion to h and Neff(h) approximately in proportion
to

√
h. Also, the larger the collected amount of charge on a pad the less critical is

the noise of the electronic amplifier. On the other hand the third term in (7.33) can
be kept small only within a range of α which becomes smaller and smaller as h
is increased. Even the modest magnetic bending of a high-momentum track may
exceed this range if h is made too large. It can be shown that the consequence is
a constant limiting relative-momentum-measuring accuracy δ p/p rather than one
which decreases as p is reduced.

Problems of double-track resolution are discussed in Sect. 11.7.1

7.3.5 A Measurement of the Angular Variation of the Accuracy

The second term in (7.33) can be studied in detail by measuring σ2
AVP as a function

of θ , keeping α fixed at 0. This has been done by Blum et al. [BLU 86] using a small
TPC with rotatable wires in a beam of 50 GeV muons. Each track had its transverse
position measured at four points using the pulse heights on the pads (see Fig. 7.11).
The pad length h was 3 cm and the wire pitch b was 4 mm. The variance was deter-
mined for every track as one half the sum of the squared residuals of the straight-line
fit. The result is σ2

m, the measured variance averaged over many tracks, as a function
of the angle θ between the tracks and the normal to the wires. According to (7.33)
σ2

m should vary as

σ2
m = σ2

0 +
b2

12Neff
(
h, σ

b

) (tanθ − tanψ)2 cos2 θ

= σ2
0 +

b2

12Neff
(
h, σ

b

) sin2(θ −ψ)
cos2 ψ

, (7.34)
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Fig. 7.11 Layout of TPC with rotatable wires [BLU 86]

where σ2
0 contains the effects of diffusion and, perhaps, of the electronics and any

remaining contribution of the angular pad effect.
The results are depicted in Fig. 7.12a,b. The curves represent fits to (7.34) on ad-

justing the three free parameters ψ,σ0 and Neff(h,σ/b). A reversal of the magnetic
field changes the sign of ψ so that two curves are seen in Fig. 7.12a,ba. The values
of the fitted parameters are shown in Table 7.2.

Keeping in mind that a magnetic field of 1.5 T reduces the transverse diffu-
sion coefficient by a factor 50 (cf. Sect. 2.4.5) we expect for the mean square
width of the diffusion cloud after 4 cm of drift a value of 1.6mm2(B = 0) or
3.2×10−2 mm2(B = 1.5T). Since on a pad length of 3 cm the number of ionization

Fig. 7.12a,b The square of the measuring accuracy σ determined by [BLU 86] as a function of
the track angle θ ,(a) in a magnetic field of ±1.5 T, (b) without magnetic field. The continuous
lines were calculated using (7.34) with the fitted parameters of Table 7.2
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Table 7.2 Parameters fitted to the measured accuracy σ 2
m according to (7.34) for two values of the

magnetic field (gas: Ar (90%)+CH4 (10%))

B(T) σ2
0 (mm2) Neff

(
h, σ

b

)
ψ(deg)

1.5 (1.08±0.03)10−2 27.8±0.6 32.3±1.5
0 (1.58±0.06)10−2 83±8 −1±2

electrons is approximately 300, the expected change in the uncertainty of the centre
is 0.5×10−2 mm2, equal to the measured difference in σ2

0 appearing in Table 7.2.
The increase by a factor of three in the parameter Neff, connected with the re-

moval of the B field, is attributed to the declustering effect: as the width of the
diffusion cloud increases it becomes comparable to b, more electrons from the same
cluster arrive on different wires, and Neff goes up. The increase does not occur when
the tracks are produced by a laser ray rather than a particle.

The angle ψ of electron drift near the wire was 32◦ at 1.5 T in gas composed of
argon (90%) and methane (10%). This value depends strongly on the gas and on the
electric field near the sense wires. The wire and field configuration employed here is
characteristic of TPCs and is described in the case studies in Sect 3.1.2. The tangent
of ψ is found to be roughly proportional to B.

7.4 Accuracy in the Measurement of the Coordinate
in the Drift Direction

In Sect. 7.2 we pointed out that there is a symmetry between the two situations sym-
bolized in Figs. 7.1 and 7.2, the coordinate measurement along the wire and along
the drift direction. The variances (7.5) and (7.9) of the single-electron coordinate
are basically the same if one employs the substitution rule (7.10); this holds under
the assumption that the time of arrival of the drifting electron at the entrance of the
wire region is the same, up to a constant, as that recorded by the electronics.

We must now complement this argument by the observation that for most drift
chambers this last approximation is too crude. Figure 7.2 shows that, owing to the
shape of the velocity field lines in the wire region, even electrons produced by a
track at α = 0 have different paths before reaching the wire: electrons collected at
the edge of the cell have to drift more than those collected in the middle.

The isochronous lines in the wire region have almost a parabolic shape and can
be approximated by

z = z0 −a
y2

b
,

where a is a dimensionless constant of the order of unity, which depends on the
shape of the field lines in this region. In the example of Fig. 7.2, a = 0.8.

The arrival time t on the wire of a single electron entering the wire region at y at
the time t is then
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t = t ′ +
1
u

(
zw +a

y2

b

)
. (7.35)

The average and variance of this last expression on the distribution (7.7) are

〈t〉 =
1
u

(
z0 +a

b
12

)
, (7.36)

〈t2〉−〈t〉2 =
1
u2

(
σ2

z +σ2
y tan2 α +

b2

12
tan2 α +

a2b2

180

)
, (7.37)

where the last and new term is the contribution of the drift-path variations in the
wire region.

7.4.1 Inclusion of a Magnetic Field Parallel to the Wire Direction:
the Drift E×B Effect

Drift chambers with precise measurements of the track coordinates along the drift
direction are often operated with a magnetic field perpendicular to the drift direction
and parallel to the wires. With this configuration one can obtain a precise determi-
nation of the curvature induced on the particle trajectory by the magnetic field, and
the momentum of the particle can be determined (see Chap. 8 for details).

If a magnetic field perpendicular to the drift electric field is present, the drifting
electrons have to move transverse to it. This produces an E×B force according to
(2.6) and causes the electrons to drift under an effective angle ψ with respect to the
direction of the electric field. The angle ψ is such that tanψ = ωτ , where ω is the
cyclotron frequency and τ is the time between two collision suitably averaged.

Electrons produced by a track at α = 0 do not arrive simultaneously at the en-
trance to the wire region, but their arrival positions depend linearly on y with a slope
tan ψ .

The variance of the arrival time of a single electron depends now on the angle ψ:

〈t2〉−〈t〉2 =
1
u2

(
σ2

z +σ2
y tan2 α +

b2

12
(tanα − tanψ)2 +

a2b2

180

)
, (7.38)

where the diffusion parameter σz refers to the new drift direction, and σy to the
direction perpendicular to it and to the magnetic field. The two parameters are not
necessary equal, owing to the electric anisotropy of diffusion (cf. Sect. 2.2.5), but
for simplicity we will replace them below by a common value.

Up to now we have dealt with the drift-time variations of a single electron. When
a measurement is performed, the whole swarm arrives. There are various ways to
extract the time information. In terms of electronics, one may either employ discrim-
inators of various types in order to trigger on the first electrons, or on the centroid
of the pulse or on some other value based on a threshold-crossing time. Or one may
apply a very fast sampling technique in order to obtain a numerical representation of
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the pulse shape, which may be used to derive a suitable estimator. We discuss here
two estimators of the arrival time of the swarm: the average and the Mth electron,
assuming for simplicity ψ = 0.

7.4.2 Average Arrival Time of Many Electrons

When we average over the arrival times of all the electrons, the statistical reduction
of the different terms of (7.38) is not the same because of the correlation between
electrons produced in the same cluster. Following the lines of Sect. 7.2 we can write
the variance of the average arrival time as

σ2
TAV =

1
u2

[
1
N

σ2

cos2 α
+

1
Neff

(
b2

12
tan2 α +

a2b2

180

)]
, (7.39)

where N represents the total ionization collected by the wire, and Neff is the effective
number of independent electrons.

The contribution of the drift-path variation of the variance of the average is al-
ways present, even for tracks in good geometry (α = 0) and close to the wire
(σ ≈ 0). It is quite large and increases with b more than linearly, since Neff increases
with the track length more slowly than in proportion.

Obviously the average over all arrival times fluctuates so badly because of the
late-arriving electrons, those that have to take the longest path when they approach
the wire. If one derives the time signal from the few electrons that arrive first, the
latecomers do not contribute. In fact, a discriminator with a low threshold will do
this automatically.

7.4.3 Arrival Time of the Mth Electron

Let the time signal be defined by the moment that the Mth electron arrives. Here M
can either be a fixed number (this is the case when a fixed-threshold discriminator
is used) or a given fraction of the total number of electrons contributing (this is the
case of a constant-fraction discriminator).

The probability p(t) of one electron arriving before the time t is calculable using
(7.7) and (7.35):

p(t) =
∫ t
−∞ f (τ)dτ∫ +∞
−∞ f (τ)dτ

, (7.40)

where

f (τ)dτ =

+b/2∫

−b/2

dy fz(τ − (zw +ay2/b)/u,y)dτ . (7.41)

Next we have to write out the probability R(t) that the Mth electron out of a
group of N arrives in the interval dt. It is equal to the probability that any one of
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the N electrons arrives precisely in dt (equal to N (dp/dt) or N dp) multiplied by the
probability that any of (M − 1) out of the (N − 1) remaining ones arrives before t
and the rest after t +dt:

R(t)dt = N

(
N −1

M−1

)
pM−1(1− p)N−M dp

dt
dt

= M

(
N

M

)
pM−1(1− p)N−Mdp = P(p)dp. (7.42)

In the last expression we have defined a probability density P(p) for the variable p.
It is easy to show that

+∞∫
−∞

R(t)dt =
1∫

0

P(p)dp = 1 .

Here and in the following steps we make use of the well-known expression for
the definite integral

1∫
0

xk(1− x) jdx =
j!k!

( j + k +1)!
.

The variance of the arrival time of the Mth electron is given by

σ2
TM = 〈t2〉−〈t〉2 ,

with

〈t2〉 =
+∞∫

−∞

t2R(t)dt =
1∫

0

t2(p)P(p)dp

and

〈t〉 =
+∞∫

−∞

tR(t)dt =
1∫

0

t(p)P(p)dp . (7.43)

The function t(p) is obtained by inverting (7.40).
We consider now separately the two contributions of the difference of the drift

paths and of the diffusion and study the particular case of a track perpendicular to
the drift velocity direction (α = 0).

7.4.4 Variance of the Arrival Time of the Mth Electron:
Contribution of the Drift-Path Variations

In order to study the effect of the drift-path variation alone we go to the limit
σy → 0,σt → 0 of (7.41) at α = 0, and obtain
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f (t)dt =
u
R

1√
a
b (tu− z0)

dt, 0 ≤ (tu− z0) ≤
ab
4

(7.44)

and f (t) = 0 outside of this time interval. Using this expression we can evaluate
p(t) from (7.40) and invert it:

t(p) =
1
u

(
ab
4

p2 + z0

)
. (7.45)

Now we compute the integrals (7.43) and use this expression for t(p):

σ2
TPM =

(
ab
4u

)2 M(M +1)
(N +1)(N +2)

(
(M +2)(M +3)
(N +3)(N +4)

− M(M +1)
(N +1)(N +2)

)
. (7.46)

This is the variance in the arrival time of the Mth electron among N independent
ones when only the drift-path variation is taken into account.

If we want to apply this formula to a practical case we have to use for N the
number of clusters, and we realize that because of the cluster-size fluctuations it
describes correctly only the case M = 1, since the threshold can only be set at a
certain number of electrons and not of clusters.

In order to take into account the cluster-size fluctuations we have to use a Monte
Carlo program. Figure 7.13a,b shows the result of a simulation of the distribution of
the arrival times, assuming the conditions valid for 1 cm of argon gas at NTP (and
27 clusters/cm). In both parts of the figure the r.m.s. of the arrival time is normalized
to the width of the collection time interval:

ΔT = ab/4u .

Fig. 7.13a,b R.m.s. variation of the arrival time of the Mth electron in 1 cm of argon, caused by
differences in drift-path length, (a) as a function of M, (b) when M is a fixed fraction of the total
number of electrons N. The r.m.s. of the average time is also shown. (See text for explanations.)
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Also visible is the r.m.s. of the average (7.39), evaluated for α = 0,σ = 0, Neff = 6
and normalized to the same quantity. We observe that the limit of the accuracy due
to the drift-path variation can be made very small by lowering the threshold. For
example, σTM comes down to 30% of σTAV when triggering on a value of M equal
to 5% of N. But by gaining on the drift-path variations, one loses on the diffusion
term.

7.4.5 Variance of the Arrival Time of the Mth Electron:
Contribution of the Diffusion

Next we study the contribution of diffusion. The probability density f (t) of (7.41)
with a = 0 and α = 0 takes the form

f (t)dt =
b
R

exp

(
− (t− z0

u )2

2σ2
t

)
√

2πσt
dt , (7.47)

and the function p(t) of (7.40) is the function E:

p(t) = E

(
t − z0/u

σt

)
=

t−z0/u
σt∫

−∞

dq
exp(−q2/2)√

2π
. (7.48)

To compute the variance of the arrival time of the Mth electron we should solve
the integrals (7.43) using the function t(p) defined by the inverse of (7.40).

Since we cannot invert the expression (7.48) analytically, we linearize it in the
vicinity of the average value of the function P(p) of (7.42). This procedure is justi-
fied by the fact that the variance of the function P(p) is small when M is small and N
large. It is illustrated in Fig. 7.14. The variance of the arrival time is the variance of
p on the probability distribution P(p) projected onto the t axis using the derivative

dt
dp

= σt
dq

dE(q)
= σt

√
2π exp

(
+
〈q〉2

2

)
,

evaluated at 〈q〉 defined by 〈p〉 = E(〈q〉).
The variance of p is given by

〈p2〉 =
1∫

0

p2P(p)dp =
M

N +1

and

〈p2〉 =
1∫

0

p2P(p)dp =
M(M +1)

(N +1)(N +2)
,
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Fig. 7.14 Illustration of
(7.50): the variance of p is
projected onto the time axis
using the tangent to the error
function erf(t) in order to
obtain σTDM

from which we obtain

〈p2〉−〈p〉2 =
M

(N +1)(N +2)

(
1− M

N +1

)
≈ M

N2

(
1− M

N

)
. (7.49)

Projecting now this variance onto the time axis (see Fig. 7.14) we obtain

σ2
TDM ≈ σ2

t

N
2π exp(〈q〉2)

M
N

(
1− M

N

)
, (7.50)

where 〈q〉 is the normalized average arrival time, given by the condition that the
corresponding integral probability p takes on the value M/(N + 1), or in good ap-
proximation, M/N. In other words, 〈q〉 is given by the inverse of the function E at
its argument M/N :

〈q〉 = E−1(M/N) . (7.51)

Expression (7.50) with (7.51) represents the answer to the question how much the
arrival time of the Mth electron fluctuates when each single electron has a Gaussian
distribution with a width σt ;σTDM goes down with the total number N of electrons
and is equal to σt/

√
N times a factor which depends only on M/N. The factor de-

scribes the loss of accuracy when the arrival-time measurement is based on the Mth
electron rather than on the average of all N. (The variance σ2

TAV of the average ar-
rival time caused by diffusion alone was σ2

t /N as implied by (7.39).) The loss factor
is plotted in Fig. 7.15 and is seen to be always larger than 1. For example the loss is
a factor 2 if one triggers on the first 5% of the swarm.

An often-quoted formula according to which

σTDM =
σt√

2logN

∞

∑
r=M

1
r2 (7.52)
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Fig. 7.15 Errors of time
measurement caused by
diffusion: r.m.s. variation
σTDM of the arrival time of
the Mth electron, in units of
the r.m.s. variation of the
average arrival time of N
electrons, σt/

√
N, plotted as

a function of M/N

instead of (7.50) has been discussed by Cramer [CRA 51]. The right-hand side of
(7.52) is the first term of a power series in 1/ logN. It turns out that for M = 1 (7.52)
is more accurate than (7.50), but it cannot reproduce the variation of σTDM with M.

We conclude this section with a comment on the various ways to estimate the
time of arrival of the electron swarm. It is clear from the previous pages that this is
a question of the relative importance of the two main contributions to the measure-
ment accuracy. Where the drift-path variations are relatively large, one gains a lot
by triggering on a low threshold. Where the diffusion is relatively large, one gains,
but not so much, by using the average. The contribution from the angular effect and
from the effect of the drift-path variations quickly increase as the angle α increases.
Since the diffusion increases with the drift length, the relative importance of the two
contributions changes through their dependence on σt and Neff, and the best estima-
tor is a function of the drift length. Depending on how far one wants to go in the
optimization, the fast sampling technique offers the greatest freedom.

7.5 Accuracy Limitation Owing to Wire Vibrations

Up to this point we have had two phenomena which, in functioning together, pro-
duce fundamental limitations on the accuracy of coordinate measurement: diffusion
and ionization fluctuation. As we have seen in this chapter, these limitations are fun-
damental in the sense that they are inherent in the measuring process and cannot be
overcome by removing technical imperfections.

After the appearance of the first edition of this book, a new phenomenon was de-
scribed which also limits the accuracy of coordinate measurement in a fundamental
way: wire vibrations caused by the avalanches on the sense wire [BOY 95]. Every
avalanche exerts a repulsive force onto the wire as long as the positive ions are on
their way to the cathode. Upon their arrival at the cathode they have conveyed a
tiny bit of momentum to the wire. In an environment of heavy background radiation
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Fig. 7.16 Schematic view of the experimental setup of [BOY 95]

thousands of these tiny bits of momentum can displace the wire and make it vibrate.
The measurement accuracy is limited to the extent that the wire position is unknown.

Boyko et al. [BOY 95] used a long drift tube and observed wire vibrations
through a window with a microscope (see Fig. 7.16). A radioactive source could
be brought close to the tube to produce counts of the frequency and pulseheight that
were registered. Wire vibration amplitudes up to 30 μm were observed at count rates
up to 4.5 kHz.

7.5.1 Linear Harmonic Oscillator Driven by Random Pulses

Before we treat the motion of the wire we look at the simpler case of the linear
harmonic oscillator under the influence of a driving force consisting of an irregular
(random) sequence of short impact pulses (see Fig. 7.17).

The equation of motion for the one-dimensional damped harmonic oscillator that
is excited by a force of very short duration at time t1 is

m
d2x(t)

dt2 +Γ
dx(t)

dt
+ kx(t) = f (t) f (t) = f1δ (t − t1), (7.53)

where f1 characterizes the size of the short impact and has the dimension of
momentum. The solution of this equation is

x(t) =
f1

ωm
e−

Γ
2m (t−t1) sinω(t − t1) ω =

√
k
m

(
1− Γ 2

4km

)
. (7.54)

In the case of several consecutive forces at times tn and with amplitudes fn, f (t) =
Σ fnδ (t − tn), the solution takes the form

Fig. 7.17 Harmonic
oscillator, characterized by
spring constant k, damping
constant Γ , and mass m,
driven by a random sequence
of short impact pulses

m
k , Γ

x
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x(t) = ∑
n

fn

ωm
e−

Γ
2m (t−tn) sinω(t − tn). (7.55)

For such a superposition of pulses of equal shape with amplitudes fn from a
probability distribution P( f ), separated by random time intervals with an average
frequency ν , Campbell’s theorem [CAM 09][RIC 44] applies. This theorem tells us
that the average x and the variance σ2

x of x(t) are given by

x = ν f
∫ ∞

0

(
1

ωm
e−

Γ
2m t sinωt

)
dt =

ν f
k

(7.56)

σ2
x = ν f 2

∫ ∞

0

(
1

ωm
e−

Γ
2m t sinωt

)2

dt =
ν f 2

2Γ k
, (7.57)

where f =
∫

f P( f )d f and f 2 =
∫

f 2P( f )d f . In a case in which all pulses have the
same amplitude f0, we have P( f ) = δ ( f − f0) and thus f = f0 and f 2 = f 2

0 . The
r.m.s. of the amplitude then becomes

σx = f0

√
ν

2Γ k
. (7.58)

We see that the fluctuation of the position increases with the rate ν but decreases
for increased damping Γ and spring constant k. The fact that σx is independent of m
is due to a balance of primary excitation and damping. For larger m, a single pulse
fn produces a smaller amplitude, a smaller damping factor Γ /2m, and a decreased
frequency ω , but increases the duration of the influence of fn.

7.5.2 Wire Excited by Avalanche Ions

The avalanche ions moving from the wire surface to the tube wall exert a force on the
wire. Since the electric field in the tube at radius R is given by E(r) = V/(r lnR/a),
the resulting force on the wire by a charge q at position r is given by F(r) = qE(r).
The movement of the ions from the wire surface to the tube wall with the velocity
v(r) = μE(r) transfers the total momentum of

p =
∫

F(t)dt =
∫ R

0
F(r)

dt
dr

dr =
∫ R

0

F(r)
v(r)

dr =
qR
μ

(7.59)

to the wire. Since the maximum drift time of the ions is typically much shorter
than any time associated with the mechanical movement of the wire (i.e., the period
of the first harmonic), one can assume the action of the repulsive force to be f =
qR/μ δ (t).

The equation determining the wire displacement y(x, t) in a cylindrical drift tube
of radius R and wire radius a in the presence of an external force density f (x, t) is
given by
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ρ
∂ 2y
∂ t2 + γ0

∂y
∂ t

−T
∂ 2y
∂x2 −κy = −gρ + f (x, t), (7.60)

where ρ is the linear wire density, γ0 the friction coefficient and T the wire tension.
The term κ = 2πε0V 2/(R lnR/a)2 represents the electrostatic force, V is the wire
voltage and gρ the gravitational force. The expression f (x, t) due to the avalanches
of charge qn at time tn, position xn and angular position φn is

f (x, t) =
R
μ ∑

n
qn cosφn δ (t − tn)δ (x− xn). (7.61)

The solution of Eq. (7.60) and the statistical analysis can be performed in analogy
to the simple example from the previous section. The solution obviously depends
on the way the excitations are distributed in the azimuthal direction and along the
wire, and whether the avalanches are created from a point source or from tracks.
Boyko et al. have shown that these different conditions can be collected into one
dimensionless constant. They find the resulting variance of the position of the wire,
averaged over the wire length, to be given by

σy =
qR
μ

√
ν

12T γ0

√
KK1K2, (7.62)

where q is the average total charge per event, ν is the total particle rate on the
tube, and K,K1,K2 are dimensionless geometry factors which together make up
one constant. This solution assumes that the avalanche ions return to the tube wall
along the trajectories of the primary ionization electrons. For point ionization we
have K = 1 and K1 = 0.5. For particle tracks through the tube we have K = 0.416
and K1 = 0.5–1 depending on the angular distribution of the tracks. K2 is another
geometry factor being ≈ 1 for uniform illumination along the tube.

Figure 7.18 shows results of a calculation assuming a drift tube of R = 1cm,
mobility μ = 1.7cm2/Vs and a damping factor γ0 = 7 × 10−5 kg/sm. The wire

Fig. 7.18 Wire vibration
amplitudes calculated by
[BOY 95] for a practical case
(see text). The uncertainty of
the wire position is shown as
a function of the count rate.
The three bands belong to the
three different avalanche sizes
indicated; in each band the
upper edge is valid for a wire
tension of 50 g and the lower
for one of 500 g
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tension is varied from 50 to 500 g. The diagram makes it clear that wire vibrations
can be a decisive factor for detectors operating in limited streamer mode (charges of
10–100 pC) at fluxes >105 particles/s. In proportional mode (charges around 1 pC)
the vibration makes a significant contribution (>10 μm) only in the case of lower
ion mobility (larger pressure), lower wire tension, smaller wire damping, and rates
beyond 1 MHz.

7.6 Accuracy Limitation Owing to Space Charge Fluctuations

There are situations in which the drift time measurement becomes inaccurate owing
to fluctuations in the drift field. As an example we discuss the ATLAS MDT drift
tubes [ATL 97]. It is expected that their momentum measuring accuracy will be
reduced when the photon background rate goes beyond the design level. In the
tubes, the background γ-radiation will produce a space charge whose density de-
pends on the counting rate, the ion charge per count, the ion drift velocity, and
the tube diameter. The space charge density is homogeneous – which produces a
field (increasing linearly from the wire to the tube wall) in addition to the main
field (proportional to 1/r). This was explained in Sect. 4.5.3 in the context of
the reduction of amplification. Using the method outlined there, we can estimate
that at a background count rate of 1.4 kHz per cm of wire length (roughly five
times the design value), the drift field is distorted to an extent that an apparent
shift of track positions of the order of a millimetre takes place in part of the drift
space.

This effect can in principle be corrected by carefully monitoring the history of
the previous few milliseconds (the ion travel time to the tube wall). If the tube works
perfectly, and if the charge associated with each previous pulse is known, it might be
possible to assess the total ion charge present in the tube at the moment of recording
the track in question. Then the drift field distortion may be calculated and the track
position corrected.

However, this procedure is limited by the inhomogeneity of the charge density
along the tube. Even if there is some knowledge about the average density of counts
along the tube, there is the statistical fluctuation in the immediate vicinity of the
recorded track. Before we report a measurement quantifying this effect, let us es-
timate what we can expect. At the flux rate of 1400 Hz/cm the charge that will
contribute to the disturbing field is the one produced in roughly 3 cm of tube length
(approximately the tube diameter) in 5 ms (the ion travel time to the wall); this cor-
responds to 1400Hz/cm× 5ms× 3cm = 21 avalanches on average. As these are
occurring at random we expect a fluctuation of 1/

√
21 or 0.22 of the total shift.

Thus if the total shift goes up to the order of 1 mm it will fluctuate on the order of
0.2 mm.

In an experiment using a strong radioactive γ-source the ATLAS muon team
[ATL 00] irradiated the tubes in the drift chambers, creating background condi-
tions five times as severe as expected for the most heavily irradiated parts of the



282 7 Coordinate Measurement and Fundamental Limits of Accuracy

Fig. 7.19 Resolution as a
function of distance from the
wire, comparison of
measurements and
simulations. Full squares:
measurement without
background; open circles:
measurement with a
background rate of
1400 Hz/cm (4.5 kHz per
tube); lines: simulations
without and with background
(36 keV per photon)

spectrometer. The coordinates of high-energy muon tracks were measured at right
angles to the wires, and the resolution was determined. The result of the experiment
is shown in Fig. 7.19. The resolution deteriorates enormously in the outer region of
the tube owing to the presence of the background, and assumes values up to 140 μm.
A detailed simulation along the ideas outlined above was carried out and compared
to the measurements. The curves in Fig. 7.19 match the data and show that the effect
is understood.

Finally, let us be aware that it is the problem of ageing to which one owes this
critical dependence of measuring accuracy on background. Had not the hydrocar-
bons been outlawed one could find gas mixtures with a much reduced dependence
of the drift velocity on the electric field (cf. the remarks at the end of Sect. 12.6.4).

Appendix to Chapter 7. Influence of Cluster Fluctuations
on the Measurement Accuracy of a Single Wire

An analytical form of Eq. (7.15) can be derived under certain assumptions as fol-
lows. The symbols used here were defined in Sect. 7.2.

We consider the Nc clusters produced along the track segment R. Ni
c represents

the clusters of cluster size i, where Ni
c = NcP(i) and P(i) is the cluster-size distribu-

tion defined in Sect. 1.2.2 [Eq. (1.34)].
The Ni

c clusters produce a total of iNi
c electrons and on average mi of them,

mi = iNcP(i)
b

Rcosθ
= iNi

c
b

Rcosθ
, (7.63)

are collected by the wire. The total number N of electrons collected by the wire is
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N = ∑
i

mi,

where the sum on i is performed on the cluster size i.
As we showed in Sect. 7.2.3, N does not depend on diffusion, and we assume in

the following that neither does each mi.
Defining x̄i to be the average position of the mi electrons collected by the wire

and produced in clusters of original cluster size i, the quantity XAV defined by (7.10)
can be rewritten as

XAV = ∑mix̄i

∑mi
= ∑mix̄i

N
. (7.64)

Its variance is given simply by

σ2
XAV

= Var(XAV) = ∑m2
i Var(x̄i)
N2 , (7.65)

since the various x̄i are not correlated because they are by definition averages of
arrival positions of electrons produced in different clusters.

The variance of x̄i, Var (x̄i), depends on the distribution of the number k(k =
0, . . . , i) of collected electrons when i are produced in the same cluster. Referring to
Eqs. (7.1) and (7.3) and assuming for simplicity x0 = 0, we find that the probability
that k electrons among i are collected is given by

1
R

+R/2∫

−R/2

ds

⎡
⎣

+∞∫
−∞

dxG(x|ssinθ ,σx)

⎤
⎦

i
⎡
⎢⎣

+b/2∫

−b/2

dyG(y|scosθ ,σy)

⎤
⎥⎦

k

×

⎡
⎢⎣1−

+b/2∫

−b/2

dyG(y|scosθ ,σy)

⎤
⎥⎦

i−k(
i

k

)
, (7.66)

where the term

(
i
k

)
takes into account the different combinations of k electrons

among i.
Since we have assumed that x0 = 0, we also have that

〈x〉 = 〈x̄i〉 = 〈XAV〉 = 0 . (7.67)

The integrals in dx of (7.66) are equal to 1. Defining

Δ(scosθ) =

+b/2∫

−b/2

dyG(y|scosθ ,σy) (7.68)

as the probability that one electron is collected by the wire (0 < Δ < 1), we rewrite
the probability that k among i electrons produced in the same cluster are collected



284 7 Coordinate Measurement and Fundamental Limits of Accuracy

by the wire as

Π i
k =

1
R

+R/2∫

−R/2

Δ k(1−Δ)i−k

(
i

k

)
ds . (7.69)

We note that

∑
k=0

iΠ i
k = 1 .

If along the track segment R we produce Ni
c clusters of i electrons, on the wire we

collect on average

• Ni
cΠ i

1 single electrons
• Ni

cΠ i
2 pairs of electrons

• Ni
cΠ i

3 triplets of electrons
• . . .
• Ni

cΠ i
i ith of electrons

and in total we have

Ni
c

i

∑
k=0

kΠ i
K = mi

electrons. This last equality can be proved using (7.69) and (7.68) and the properties
of the binomial distribution.

The number Ni
pairs of different pairs of electrons produced in the same cluster of

cluster size i and collected by the wire is given by

Ni
pairs = Ni

c

i

∑
k=2

(
k

2

)
Π i

k =
Ni

c

2

(
i

∑
k=0

k2Π i
k −

i

∑
k=0

kΠ i
k

)

=
Ni

c

2

i

∑
k=0

k2Π i
k −

mi

2
. (7.70)

We are now in a position to compute the variance Var (x̄i) of the average position
x̄i of the mi electrons produced by clusters of cluster size i and collected by the wire:
we have mi variance terms 〈x2〉 and 2×Ni

pairs covariance terms 〈xx〉. The average
〈x̄i〉 is zero because we have assumed that x0 = 0 in (7.66) [see also (7.67)]. We
obtain

Var(x̄i) =
mi〈x2〉+Ni

pairs〈xx〉
m2

i

=
mi〈x2〉+

(
Ni

c ∑i
k=0 k2Π i

k −mi
)
〈xx〉

m2
i

=
1
mi

[
(〈x2〉−〈xx〉)+

∑i
k=0 k2Π i

k

∑i
k=0 kΠ i

k

〈xx〉
]

. (7.71)
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Using (7.69) and the properties of the binomial distribution, one can show that

i

∑
k=0

k2Π i
k =

i2 − i
R

+R/2∫

−R/2

Δ 2ds+
i
R

+R/2∫

−R/2

Δds ,

i

∑
k=0

kΠ i
k =

i
R

+R/2∫

−R/2

Δ 2ds .

From these equations we obtain

∑i
k=0 k2Π i

k

∑i
k=0 kΠ i

k

= 1+(i−1)I2 ,

where

I2 =

+R/2∫
−R/2

Δ 2ds

+R/2∫
−R/2

Δds

, (7.72)

and we can rewrite (7.71) as

Var(x̄i) =
1
mi

(〈x2〉− I2〈xx〉+ iI2〈xx〉) . (7.73)

Finally we substitute the variance Var(x̄i) from this last equation into (7.65) and
set

Var(XAV) = ∑mi(〈x2〉− I2〈xx〉+ iI2〈xx〉)
N2

=
〈x2〉− I2〈xx〉

N
+ ∑ imi

N2 I2〈xx〉 . (7.74)

Using (7.63) we can show that

∑i imi

N2 = ∑i i2NcP(i)[b/(Rcosθ)]
N2 = ∑i i2NcP(i)[b/(Rcosθ)]

(∑i iNcP(i)[b/(Rcosθ)])2

=
∑ j n2

j(
∑ j n j

)2

1
b/(Rcosθ)

=
1

Neff
, (7.75)
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where the sum over i is performed on the cluster size i, while the sum over j is
performed on the Nc clusters produced by the particle in the track segment R and n j

is the number of electrons in the cluster j.
Neff was defined in Sect. 1.2.5 as the effective number of electrons computed

along the track segment R; here it is scaled by the normalization factor b/Rcosθ
derived in (7.2). In Sect. 1.2.5 we showed that Neff does not scale linearly with the
length of track sampled, while (7.75) implies a linear dependence of Neff on R. This
is an implicit consequence of the assumption that the mi are constant, since we do
not take into account the effect of the rare and large clusters present in the tails
of the cluster-size distribution, and this effect is a limitation of our derivation. We
comment on this point at the end of this appendix.

The quantity I2 defined in (7.72) can be computed using (7.68):

I2 = Erf

(
b

2σy

)
− 1√

π
2σy

b

[
1− exp

(
− b2

4σ2
y

)]
, (7.76)

where Erf is the error function [ABR 64],

Erf(z) =
2√
π

z∫
0

exp(−t2)dt .

In the limit σy 	 b, I2 → 1, since Erf(∞) = 1. When σy � b, then I2 → b/
(2
√

πσy) → 0.
In order to compute explicitly the variance Var(XAV) of (7.74) we have to evaluate

the correlation term 〈xx〉.
The covariance of the arrival position of two electrons produced in the same

cluster is evaluated from the distribution function of their arrival positions. Starting
from (7.1) and (7.3) we write it as

Fxx(x1,y1,x2,y2) =
1
R

+R/2∫

−R/2

dsG(x1|ssinθ ,σx)G(y1|scosθ ,σy)

× G(x2|ssinθ ,σx)G(y2|scosθ ,σy), (7.77)

where the two indices 1 and 2 refer to the two electrons.
This distribution is not normalized. Its normalization is the probability that two

electrons produced in the same cluster are both collected by the wire. It can be
shown that

+∞∫
−∞

dx1

b/2∫

−b/2

dy1

∞∫
−∞

dx2

b/2∫

−b/2

dy2Fxx(x1,y1,x2,y2) = I2
b

cosθ
, (7.78)
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where I2 is defined by (7.72). Since in (7.74) we have the product I2〈xx〉, we can
compute directly

I2〈xx〉 =
cosθ

b

+∞∫
−∞

dx1

b/2∫

−b/2

dy1

×
+∞∫

−∞

dx2

+b/2∫

−b/2

dy2x1x2Fxx(x1,y1,x2,y2) , (7.79)

and after some tedious integration we obtain

I2〈xx〉 = tan2 θ

[(
σ2

y +
b2

12

)(
Erf

(
b

2σy

)
− 2√

π
σy

b

(
1− exp

[
− b2

4σ2
y

]))

+ b2 1
3
√

π

(
4

σ3
y

b3

(
1− exp

[
− b2

4σ2
y

])
− σy

b

)

− σ2
y

1√
π

(
σy

b

(
1− exp

[
− b2

4σ2
y

]))]
. (7.80)

Now we have all the information we require and can write down the final formula
for the variance Var(XAV). Using (7.74), (7.75), (7.5) and (7.80) yields

σ2
XAV

= Var(XAV) = σ2
x

1
N

+ tan2 θσ2
y

[
1
N

+
(

1
Neff

− 1
N

)
Fσ

(σy

b

)]

+ tan2 θ
b2

12

[
1
N

+
(

1
Neff

− 1
N

)
Fb

(σy

b

)]
, (7.81)

where the two functions Fσ and Fb are given by

Fσ = Erf

(
b

2σy

)
− 3√

π
σy

b

(
1− exp

[
− b2

4σ2
y

])
(7.82)

Fb = Erf

(
b

2σy

)
− 2√

π
σy

b

(
1− exp

[
− b2

4σ2
y

])(
1−8

σ2
y

b2

)
− 4√

π
σy

b
. (7.83)

These are equal to 1 when σy/b is zero and go to zero when σy/b → ∞. Inspecting
(7.81) we note that this behaviour corresponds to a smooth transition between the
coefficients 1/Neff and 1/N in the angular terms. In the absence of diffusion there is
complete correlation and the reduction factor of the angular term in the variance of
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Fig. 7.20 Declustering as a
function of σ/b. Plot of the
functions defined in (7.82)
and (7.83)

the average (7.10) is only Neff; when the diffusion is large compared to the width b
of the drift cell, there is no correlation and the reduction factor of the angular term
is N, the total number of collected electrons. The functions Fσ and Fb are shown in
Fig. 7.20.

If we had calculated the plot of Fig. 7.3 with (7.81) (instead of using the numer-
ical simulation (see Sect. 7.2.3)), we would have found a similar behaviour but a
somewhat steeper increase of Neff(σ) with σ/l. This is a consequence of the as-
sumption introduced: we have assumed that the average number mi of electrons
originated by clusters of size i and collected by the wire is constant. If we do not
make this assumption, then (7.65) contains an additional term,

Var(XAV) = ∑m2
i Var(x̄i)
N2 + ∑(x̄i −XAV)2Var(mi)

N2 . (7.84)

The second term plays a role when the rare large clusters are present, since they
dominate the average. The numerical simulation introduced in Sect. 7.2.3 and used
to produce Fig. 7.3 takes into account all the various effects due to the peculiar
shape of the cluster-size distribution and then correctly produces a variance larger
than that evaluated in (7.81) and consequently a smaller Neff(σ).
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Chapter 8
Geometrical Track Parameters and Their Errors

Now we come to the point to which all the efforts of drift-chamber design lead up –
the determination of the track parameters. The point of origin of a track, its angles of
orientation, and its curvature in a magnetic field are the main geometric properties
that one aims to measure. The proof of the pudding is in the eating, and the proof of
the drift chamber is in the track parameters.

In a particle experiment a track is often measured by several detectors, and the
accuracy of its parameters depends on the integrity of the whole ensemble, and in
particular on the knowledge of the relative detector positions. Likewise, the track
parameters determined with a drift chamber depend on its overall geometry, the
electrode positions, fields and electron drift paths. If one wants to calculate the
achievable accuracy of a drift chamber in all parts of its volume, one needs to
have quantitative knowledge of these factors in addition to the point-measuring ac-
curacy. Such knowledge is often difficult to get, and then one may want to work
the other way around: starting from a measurement of the achieved accuracy of
track parameters, one can compare it to that expected from the point-measuring
accuracy alone. If they agree, then the other factors make only a small contri-
bution, if they do not, the contribution of the other factors is larger, or perhaps
dominant.

The achieved accuracy can be measured in a number of ways. The common meth-
ods include the following: vertex localization by comparing tracks from the same
vertex, momentum resolution by measuring tracks with known momentum, a com-
bination of momentum and angular precision with a measurement of the invariant
mass of a decaying particle.

It is obviously our first task to ascertain the accuracy that can be achieved in a
given geometry when considering the resolution of each measuring point alone, ig-
noring all the other factors by assuming they are negligible or have been corrected
for. We will do this in two sections, one for the situation without magnetic field,
using straight-line fits, the other for the situation inside a magnetic field, where a
quadratic fit is appropriate. One section is devoted to accuracy limitations due to
multiple Coulomb scattering in parts of the apparatus. Finally, the results on spec-
trometer resolution are summarized.

W. Blum et al., Particle Detection with Drift Chambers, 291
doi: 10.1007/978-3-540-76684-1 8, c© Springer-Verlag Berlin Heidelberg 2008
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A general treatment of the methods of track fitting using different statistical ap-
proaches is presented in the book of Böck, Grote, Notz and Regler [BOC 90]. Here
our aim is more modest and more specific: on the basis of the least-squares method
we would like to understand how the point-measuring errors of a drift chamber
propagate into the track parameters.

8.1 Linear Fit

Referring to Fig. 8.1, there are N + 1 points at positions xi(i = 0,1, . . . ,N) where
the coordinates yi of a given track were measured. We ask for the accuracy with
which the coordinate and the direction of the track are determined at x = 0. If there
is a magnetic field, the track is curved. As a first step we imagine the curvature to
be well measured outside the vertex detector so that we are allowed to consider a
straight-line extrapolation; the influence of an error of curvature will be estimated
in Sect. 8.2.

A least-squares fit to the straight line

y = a+bx (8.1)

is obtained by minimizing

χ2 = ∑(yi −a−bxi)2/σ2
i , (8.2)

where the σi are the uncorrelated point-measuring errors whose reciprocal squares
are used as weights. The two conditions ∂ χ2/∂a = 0 and ∂ χ2/∂b = 0 lead to the
following linear equations:

aS1 +bSx = ∑yi/σ2
i ,

bSx +bSxx = ∑xiyi/σ2
i ,

where S1 = ∑1/σ2
i , Sx = ∑xi/σ2

i , Sy = ∑yi/σ2
i , Sxy = ∑xiyi/σ2

1 , Sxx = ∑xixi/σ2
i

(all sums from 0 to N); also D = S1Sxx −S2
x . The two linear equations are solved for

the best estimates of the coefficients a and b by

a = (SySxx −SxSxy)/D ,

b = (S1Sxy −SxSy)/D .

Fig. 8.1 Straight-line fit to
the origin
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Let us now consider the fluctuations of a and b. They are caused by the fluctua-
tions of the yi, which can be characterized by the (N +1)2 covariances [yiyk] defined
as the average over the product minus the product of the averages:

[yiyk] = 〈yiyk〉−〈yi〉〈yk〉 ; (8.3)

they vanish when i �= k because the yi fluctuate independently of one another, and
[y2

i ] is what was called σ2
i before.

The fluctuations of a and b are described by their covariance matrix,
([

a2
]

[ab]

[ab] [b2]

)
,

and we have to determine how it depends on the quantities [y2
i ].

To compute [a2] = 〈a2〉−〈a〉2 we use (8.3):

[a2] =
(

S2
xx ∑

(
〈y2

i 〉−〈yi〉2)/σ4
i +S2

x

(
∑x2

i 〈y2
i 〉− x2

i 〈yi〉2)/σ4
i

−2SxSxx ∑xi
(
〈y2

i 〉−〈yi〉2)/σ4
i

)
/D2

=
(
Sxx ∑[y2

i ]/σ4
i +S2

x ∑x2
i [y

2
i ]/σ4

i −2SxSxx ∑xi[y2
i ]/σ4

i

)/
D2

= Sxx/D .

(8.4)

The other two elements are calculated in a similar way, and the covariance matrix
of the fitted parameters is

([
a2
]

[ab]

[ab] [b2]

)
=

(
Sxx −Sx

−Sx S1

)
1
D

. (8.5)

Since the fit is linear, the result (8.4) and (8.5) depends only on the covariances
of the yi and not on their averages.

8.1.1 Case of Equal Spacing Between x0 and xN

We evaluate (8.3) for N +1 equally spaced points with equal point errors ε2. In this
case S1 = (N + 1)/ε2, Sx = (N + 1)(x0 + xN)/(2ε2) and Sxx = (N + 1)[x0xN +
(xN − x0)2(2 + 1/N)/6]/ε2. We see that the result will depend on the number of
points and on the ratio of the two extreme distances xN and x0. Let us introduce the
ratio r, which expresses how far – in units of the chamber length – the centre of the
chamber is away from the origin:

r =
xN + x0

2(xN − x0)
. (8.6)



294 8 Geometrical Track Parameters and Their Errors

Table 8.1 Values of the factor Z(r,N) in (8.7) for various distances r of the vertex from the centre
of the chamber, in units of the chamber length, and for various numbers of N + 1 equally spaced
sense wires

N r: 5.0 3.0 2.0 1.5 1.0 0.75 0.60 0.50

1 10.1 6.08 4.12 3.16 2.24 1.80 1.56 1.41
2 12.3 7.42 5.00 3.81 2.65 2.09 1.78 1.58
5 14.7 8.84 5.94 4.50 3.09 2.41 2.02 1.77
9 15.7 9.45 6.35 4.81 3.29 2.55 2.13 1.86
19 16.5 9.94 6.67 5.04 3.44 2.67 2.22 1.93
infin. 17.3 10.4 7.00 5.29 3.61 2.78 2.31 2.00

Inserting the sums into (8.4) and taking the square root we obtain the vertex local-
ization accuracy

σa =
ε√

(N +1)
Z(r,N) , (8.7)

with

Z(r,N) =

(
12r2 +1+ 2

N

1+ 2
N

)1/2

.

Values of Z have been computed for some r and N; results are listed in Table 8.1.
We observe that the strongest functional variation is with the ratio r; this is under-
standable since it has the meaning of a lever–arm ratio. For any given r, the factor Z
is more favourable for small N; this means that the dependence on N is weaker than
the 1/

√
(N +1) rule. The error in the direction is given by

σb =
ε

xN − x0

1√
N +1

√
12N

N +2
. (8.8)

8.2 Quadratic Fit

In a magnetic spectrometer the particle momenta are determined from a measure-
ment of the track curvature. We recall that in a homogeneous magnetic field B the
trajectory is a helix with radius of curvature

R = pT/eB , (8.9)

where e is the electric charge of the particle and pT its momentum transverse to the
magnetic field. A remark concerning units: relation (8.9) is in m, if e is in As, B in T
(i.e. Vs/m2) and pT in N s (i.e. V A s2/m). If one wants to express the momentum
in units of GeV/c, then one must multiply pT by the factor f that says how many
GeV/c there are to one N s. This factor is

f =
1GeV/c

1Ns
=

109e(As)(V)
(VAs2/m)2.9979×108(m/s)

, (8.10)
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so that (8.9), to better than one tenth of a percent, takes on the simple form

R =
10
3

(
Tm

GeV/c

)
pT

B
. (8.11)

This radius has to be measured in a plane perpendicular to B. Our interest is in the
large momenta because they are the most difficult to measure precisely. Therefore
we approximate the helix trajectory, which is actually a circle in a plane perpendic-
ular to its axis, by a parabola in such a plane,

y = a+bx+(c/2)x2 , (8.12)

up to terms of the order of x3/R2, where c = 1/R. The measured yi at positions xi

are fitted to (8.12) with the aim of determining a, b and c.

8.2.1 Error Calculation

One is interested in the errors of a, b and c. Our procedure is similar to that of
Gluckstern [GLU 63], but is more general in that it includes the extrapolation to a
vertex point at an arbitrary distance.

The linear equations for a, b and c are derived from the conditions of a minimal
χ2 and read as follows (the weighting factor at each point is denoted by fn):

aF0 +bF1 +(c/2)F2 = ∑ fnyn ,

aF1 +bF2 +(c/2)F3 = ∑ fnxnyn (8.13)

aF2 +bF3 +(c/2)F4 = ∑ fnx2
nyn ,

where
Fj = ∑ fn(xn) j . (8.14)

All sums run from n = 0 to n = N. The solution of (8.13) for our three quantities is

a = ∑ynGn

∑Gn
,

b = ∑ynPn

∑xnPn
, (8.15)

c
2

= ∑ynQn

∑x2
nQn

,

where the Gn, Pn and Qn are expressed using determinants of the Fj:

Gn = fn

∣∣∣∣F2 F3

F3 F4

∣∣∣∣− fnxn

∣∣∣∣F1 F2

F3 F4

∣∣∣∣+ fnx2
n

∣∣∣∣F1 F2

F2 F3

∣∣∣∣ ,
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Pn = − fn

∣∣∣∣F1 F3

F2 F4

∣∣∣∣+ fnxn

∣∣∣∣F0 F2

F2 F4

∣∣∣∣− fnx2
n

∣∣∣∣F0 F1

F2 F3

∣∣∣∣ ,

Qn = fn

∣∣∣∣F1 F2

F2 F3

∣∣∣∣− fnxn

∣∣∣∣F0 F1

F2 F3

∣∣∣∣+ fnx2
n

∣∣∣∣F0 F1

F1 F2

∣∣∣∣ .

They have the property that

∑Qn = ∑xnQn = ∑Pn

= ∑x2
nPn = ∑xnGn = ∑x2

nGn = 0 (8.16)

and

∑x2
nQn = ∑xnPn = ∑Gn . (8.17)

Using (8.16), the variance of the first coefficient is given by

[a2] = ∑∑GmGn[ymyn]
/(

∑Gn
)2

, (8.18)

where [ymyn] denotes the covariance of the measurements at two points xm and xn.
The other elements are formed in the same manner.

The point-measurement errors are equal and uncorrelated. We write

[yn ym] = ε2δmm (8.19)

and obtain
[
a2]= ε2 ∑G2

n

/(
∑Gn

)2
,

[ab] = ε2 ∑GnPn

/(
∑Gn

)(
∑xnPn

)
,

[
b2]= ε2 ∑P2

n

/(
∑xnPn

)2
, (8.20)

[ac] = 2ε2 ∑GnQn

/(
∑Gn

)(
∑x2

nQn
)

,

[bc] = ε22∑QnPn

/(
∑x2

nQn
)(

∑̈xnPn
)

,

[
c2]= ε24∑Q2

n

/(
∑x2

nQn
)2

.

8.2.2 Origin at the Centre of the Track – Uniform Spacing of Wires

In order to facilitate the evaluation of (8.20) we begin by setting the origin of the x
coordinates at the centre of the track. Let
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qn = xn − xc, with xc = ∑xn/(N +1) , (8.21)

and
L = xN − x0 .

For uniform spacing and uniform weights fn = 1, the subdeterminants are easily
calculated to be

Gn = F2F4 −q2
nF2

2 ,

Pn = qn(F0F4 −F2
2 ) ,

Qn = −F2
2 +q2

nF0F2 ,

with Fj = ∑q j. Note that F1 = F3 = 0 for symmetry. The other Fj are

F0 = N +1 ,

F2 = L2 (N +1)(N +2)
12N

,

F4 = L4 (N +1)(N +2)(3N2 +6N −4)
240N3 ,

S = F0F4 −F2
2 = L4 (N −1)(N +1)2(N +2)(N +3)

180N3 ,

(8.22)

A combination S, needed later, has been included here. Inserting the subdetermi-
nants into (8.20) we find the six elements of the covariance matrix, valid at the
origin, that is the centre of the track:

[
a2]= ε2F4/(F0F4 −F2

2 ) ,

[ab] = 0 ,

[
b2]= ε2/F2 ,

[ac] = −2ε2F2/(F0F4 −F2
2 ) ,

[bc] = 0 ,

[
c2]= 4F0/(F0F4 −F2

2 ) .

(8.23)

Note that there is no correlation between the direction b and the offset a or the
curvature c in the middle of the track. The elements of the covariance matrix (8.23)
will assume different values outside the centre, and this will be treated in Sect. 8.2.4.
The variance of the curvature, however, is the same all along the track, and we can
evaluate it by inserting (8.22) into the last of the equations (8.23). The variance of
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Table 8.2 Values of the factors AN in (8.24) and √(AN)/8 in (8.26) for various values of N. (The
number of measuring points is N +1.)

N AN
√(AN)/8

2 96 1.22
3 81 1.12
4 73.1 1.07
5 67.0 1.02
6 61.7 0.982
8 53.2 0.912
10 46.6 0.853

infin.
720

N +5
3.35√
N +5

the curvature is equal to

[c2] =
ε2

L4

720N3

(N −1)(N +1)(N +2)(N +3)
=

ε2

L4 AN , (8.24)

where we have defined a factor AN , some values of which are enumerated in
Table 8.2.

8.2.3 Sagitta

The maximum excursion of a piece of a circle over the corresponding chord is called
its sagitta. The sagitta s of a track with length L and radius of curvature R � L
is proportional to the square of the track length, as can be seen from the sketch
of Fig. 8.2 when developing the cosine of the small angle (L/2R) into powers of
(L/2R):

s = L2/8R , (8.25)

so its r.m.s. error becomes

δ s = ε
√

AN

8
. (8.26)

This ratio between the errors of the sagitta and the individual point coordinates is
also contained in Table 8.2.

Fig. 8.2 Sagitta s
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8.2.4 Covariance Matrix at an Arbitrary Point Along the Track

Now we know the full covariance matrix of a, b and c at the centre of the chamber,
and we are curious to know the accuracy with which the measured track can be
extrapolated to some point x outside the centre. For this we must express the position
and the slope of the track as a function of the independent variable which defines
the distance from the track centre to the point in question:

a(x) = a0 +b0x+(c0/2)x2 ,

b(x) = b0 + c0x ,

c(x) = c0 .

(8.27)

a0,b0 and c0 represent the values of the coefficients at the centre, for which the
covariance matrix was given in (8.23). The distance of the point x from the centre
xc of the chamber will be described by the ratio

r =
x− xc

L
,

which has the same physical meaning as the r of (8.6) used in the linear fit.
For example, to compute the covariance [a(x) c(x)], we form

[(a0 +b0x+(c0/2)x2) c0] ,

which is equal to [a0c0]+x[b0c0]+(x2/2)[c2
0]. In this way the full covariance matrix

is constructed, and the result is

[a2(r)] = ε2
[

F4

S
+ r2

(
L2

F2
− 2L2F2

S

)
+ r4 L4F0

S

]
= ε2 1

N +1
B2

aa(r,N) ,

[a(r)b(r)] =
ε2

L

[
r

(
L2

F2
− 2L2F2

S

)
+2r3 L4F0

S

]
=

ε2

L
1

N +1
B2

ab(r,N) ,

[
b2(r)

]
=

ε2

L2

[
L2

F2
+4r2 L4F0

S

]
=

ε2

L2

1
N +1

B2
bb(r,N) ,

[a(r)c0] =
ε2

L2

[
−2L2F2

S
+2r2 L4F0

S

]
=

ε2

L2

1
N +1

B2
ac(r,N) ,

[b(r)c0] =
ε2

L3

[
4r

L4F0

S

]
=

ε2

L3

1
N +1

B2
bc(r,N) ,

[
c2

0

]
=

ε2

L4

[
4

L4F0

S

]
=

ε2

L4

1
N +1

B2
cc(N) .

(8.28)
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Apart from the dimensional factors in front of the square brackets, these covariances
depend only on r and N; they contain a common denominator N +1, the number of
measurements. The remaining factors have been called B(r,N); they tend to a con-
stant as N → ∞, and they rapidly increase with r. The factors Baa and Bbb belonging
to the diagonal elements [a2(r)] and [b2(r)] were calculated for some values of N
and r using (8.28) and (8.22). They are listed in Tables 8.3 and 8.4. The factor Bcc

belonging to [c2] does not vary with r and was already contained in Table 8.2 in the
form of AN = B2

cc(N)/(N +1).

8.2.5 Comparison Between the Linear and Quadratic Fits
in Special Cases

Let us consider the extrapolation of a measured track to a vertex. The accuracy of
vertex determination is very different whether it happens inside a magnetic field
with unknown track momentum or outside (or momentum known). We have a direct
comparison in Tables 8.1 and 8.3. It appears that a chamber whose front end is only
a quarter of its length away from the vertex (r = 0.75) extrapolates half as well
when inside a field. This gets quickly worse when the vertex is further away – if the
factor of comparison is around 2.3 at r = 0.75, it is near 5 at r = 1.5. This depends
only weakly on the number of wires. It is obviously essential for a vertex chamber
that it be supported by a momentum measuring device with precision much better
than that of the vertex chamber alone.

The loss of accuracy owing to the presence of a magnetic field is also important
for the measurement of direction. We want to compute the precision with which a
chamber can measure the direction of a track at the first of N + 1 regularly spaced
wires. In the quadratic fit we may use the third of equations (8.28) in conjunction
with Table 8.4 (last column), or we may evaluate the equation directly for r = 1/2,
which yields

[
b2
(

1
2

)]
=

ε2

L2

12(2N +1)(8N −3)N
(N −1)(N +1)(N +2)(N +3)

(quadratic fit) . (8.29)

Table 8.3 Values of the factor Baa(r,N) in (8.28) at various points along the track at distances r
from the centre of the chamber (in units of its length), for various numbers of N +1 equally spaced
sense wires

N r: 5 3 2 1.5 1 0.75 0.60 0.50

2 211 75.3 32.9 18.1 7.63 4.10 2.65 2.05
3 224 80.2 35.2 19.5 8.29 4.48 2.84 2.07
5 250 89.5 39.4 21.9 9.39 5.10 3.20 2.26
10 282 101 44.6 24.8 10.7 5.84 3.65 2.54
19 304 109 48.1 26.8 11.6 6.32 3.95 2.72
infin. 335 120 53.0 29.5 12.8 7.00 4.37 3.00
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Table 8.4 Values of the factor Bbb(r,N) in (8.28) at various points along the track at distances r
from the centre of the chamber (in units of its length), for various numbers of N +1 equally spaced
sense wires

N r: 5 3 2 1.5 1 0.75 0.60 0.50

2 84.9 51.0 34.0 25.6 17.1 13.0 10.5 8.83
3 90.0 54.0 36.1 27.1 18.2 13.8 11.1 9.39
5 100 60.2 40.2 30.2 20.3 15.3 12.4 10.4
10 113 68.0 45.4 34.1 22.9 17.3 14.0 11.8
19 122 73.2 48.8 36.7 24.6 18.6 15.0 12.6
infin. 134 80.6 53.8 40.4 27.1 20.4 16.5 13.9

In the linear fit we use (8.8), where L was called xN − x0:

σ2
b =

ε2

L2

12N
(N +1)(N +2)

linear fit . (8.30)

The ratio of the errors is

with bending
without bending

=
(

(2N +1)(8N −3)
(N −1)(N +3)

)1/2

, (8.31)

which tends to 4 for infinite N and is 3.60 for N = 2. This ratio is independent of
the magnetic field and of the particle momentum as long as the curvature can be as
large as the uncertainty with which it is measured. If there is a priori knowledge that
the sagitta of the track is much smaller than the measurement error, the curvature
can be neglected, and (8.30) applies.

The fact that the directional error is dominated by the error in curvature is also
visible in their correlation coefficient: with some algebra, we form the ratio

[b( 1
2 )c]√

[c2][b2( 1
2 )]

=
0.968√(

1+ 1
2N

)(
1− 3

8N

) (8.32)

and find it almost equal to 1. This means the error in curvature produces almost
the entire error in direction. Figure 8.3 shows a picture of the case 〈c〉 = 0. Since
the sagitta is half as long as the corresponding distance between the chord and the
end-point tangent, we may estimate the directional error with

Fig. 8.3 Error δb in
direction, created by the
sagitta error δ s. Case of zero
average curvature
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δb =
2δ s
L/2

. (8.33)

Using (8.26),(8.24) and (8.29) one may verify that (8.33) is correct within 4% for
all N.

8.2.6 Optimal Spacing of Wires

With a given number N + 1 of wires and a given chamber length L the elements of
the covariance matrix can be minimized by varying the wire positions. Summarizing
Gluckstern [GLU 63] we mention that the optimal spacing is different for different
correlation coefficients, and that for a minimal [c2] the best wire positions are ideally
the following:

(N +1)/4 wires at x = 0, (N +1)/2 wires at x = L/2 ,

(N +1)/4 wires at x = L .

In practice the clustering of wires will use some of the chamber length. For the ideal
case this was set to zero, and he calculates at r = −1/2 that[

b2

(
1
2

)]
= ε2

L2
72

N+1 ,

[
b

(
1
2

)
c

]
= − ε2

L3
128

N+1 ,

[
c2
]
= ε2

L4
256

N+1 ,

(8.34)

and this, at large N, is an important factor of 1.7 better in the momentum resolution
than (8.28).

8.3 A Chamber and One Additional Measuring
Point Outside

It happens quite often that tracks are measured not only in the main drift chamber
but in addition at some extra point which is located some distance away from the
main chamber. Typical examples are a miniature vertex detector near the beam pipe,
or a single layer of chambers surrounding the central main chamber. In an event with
tracks coming from the same vertex, the vertex constraint serves a similar purpose,
especially when the vertex position must be the same for many events. We suppose
that all the measurements happen inside a magnetic field.

Since we have developed the covariance matrix of the variables a, b and c at an
arbitrary point r along the track, we have the tools to add the constraint of the one
additional space-coordinate measurement. The scheme to do this is the following.
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Let the full covariance matrix at r (8.28) be abbreviated by

Cik(r) =

⎛
⎜⎜⎜⎝

[
a2(r)

]
[a(r)b(r)] [a(r)c]

[a(r)b(r)]
[
b2(r)

]
[b(r)c]

[a(r)c] [b(r)c]
[
c2
]

⎞
⎟⎟⎟⎠ . (8.35)

This matrix has to be inverted to obtain the χ2 matrix C−1
ik (r). The corresponding

matrix D−1
ik of the additional measuring point has only the one element that belongs

to the space-coordinate non-zero; let us call it 1/ε2
v (εv is the accuracy of the addi-

tional measuring point):

D−1
ik =

⎛
⎝ ε−2

v 0 0

0 0 0
0 0 0

⎞
⎠ . (8.36)

Now the covariance matrix Eik of the total measurement, N + 1 regularly spaced
wires plus this one point, a distance rL away from their centre, is given by the
inverse of the sum of the inverses of the individual covariances:

(Eik)−1 = (Cik(r))−1 +(Dik)−1 (8.37)

Now there is a theorem (e.g. [SEL 72]) which states that if the inverse of a first
matrix is known, then the inverse of a second matrix, which differs from the first in
only one element, can be calculated according to a simple formula. In our case the
first matrix is C−1, and its known inverse is C; the second matrix, E−1, differs from
the first only in the (1, 1) element which is larger by 1/ε2

v . The inverse of the second
matrix is given by

Eik = Cik −
C1iC1k

ε2
v +C11

. (8.38)

This means that our covariance matrix (8.28) changes by the addition of one point
at r according to the following scheme (we leave out the argument r):

[
a2
]
→ [a′2] = [a2]− [a2]2

ε2
v +[a2]

,

[ab] → [a′b′] = [ab]− [a2][ab]
ε2

v +[a2]
,

[
b2
]
→ [b′2] = [b2]− [ab2]2

ε2
v +[a2]

,

[ac] → [a′c′] = [ac]− [a2][ac]
ε2

v +[a2]
,

[bc] → [b′c′] = [bc]− [ab][ac]
ε2

v +[a2]
,

[
c2
]
→ [c′2] = [c2]− [ac]2

ε2
v +[a2]

.

(8.39)
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8.3.1 Comparison of the Accuracy in the Curvature Measurement

We are particularly interested in the gain that can be obtained for the curvature
measurement. Introducing the ratio f 2 = ε2

v /[a2(r)] (how much better the extra mea-
surement is compared to the extrapolated point measuring accuracy of the chamber),
we write the gain factor as

κ2( f ,r) =
[c2]− [a(r)c]2

ε2
v +[a2(r)]
[c2]

= 1− [a(r)c]2

(1+ f 2)[a2(r)][c2]
. (8.40)

Since the covariance matrix (8.28) is a function of r and N,κ also depends on N. We
evaluate (8.40) in the limit of N → ∞. Table 8.5 contains the result.

It appears that considerable improvement is possible for the curvature, and hence
momentum, measurement of a large drift chamber when one extra point outside
can be measured with great precision. This is a consequence of the increase of the
lever arm. As an example we consider the geometry of the ALEPH TPC. For a
well measured track there are 21 measured points, equally spaced over L = 130cm;
each has ε = 0.16mm, and therefore

√
[c2] =

√
(720/25)× (0.16×10−3)/1.302 =

5.1× 10−4 m−1, according to (8.24). A silicon miniature vertex detector with εv =
0.02mm,35cm in front of the first measuring point (r = 0.77), would result in an
improvement factor of κ = 0.40, according to Table 8.5. Here we have determined√

[a2(0.77)] = 7×0.16mm/
√

21 = 0.24mm, using the first of (8.28) and Table 8.3;
therefore f = 0.02/0.24 = 0.08.

Such enormous improvement could only be converted into fact if all the system-
atic errors were tightly controlled at a level better than these 20 μm. Also, for the
moment we have left out any deterioration caused by multiple scattering, to which
subject we will turn in Sect. 8.4.

8.3.2 Extrapolation to a Vertex

Since it is the first purpose of a vertex detector to determine track coordinates at a
primary or secondary interaction vertex, we must carry our error calculation forward

Table 8.5 Factors κ( f ,r) of (8.40) by which the measurement of curvature becomes more accu-
rate when a single measuring point with accuracy εv = f

√
[a2(r)] is added to a large number of

regularly spaced wires at a distance rL from their centre

r f 2: 0 0.1 0.2 0.3 0.5 1.0 2.0

0.5 0.67 0.70 0.73 0.76 0.79 0.85 0.90
0.6 0.53 0.59 0.63 0.67 0.72 0.80 0.87
0.7 0.43 0.51 0.57 0.61 0.68 0.77 0.85
0.8 0.37 0.46 0.53 0.58 0.65 0.75 0.84
1.0 0.28 0.40 0.48 0.54 0.62 0.73 0.83
1.5 0.18 0.35 0.44 0.51 0.60 0.72 0.82
2.0 0.13 0.33 0.43 0.49 0.59 0.71 0.82
infin. 0 0.30 0.41 0.48 0.58 0.71 0.82
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Fig. 8.4 Extrapolation of the
quadratic fit to a vertex
located a distance x in front of
a vertex detector with
accuracy ±εv. The N +1
wires of a chamber are
uniformly spaced over the
length L. The vertex detector
is a distance xv away from the
centre of the wires. In the
text, r = xv/L

to the vertex. The situation is sketched in Fig. 8.4. The coordinate x represents the
distance of the detector to the vertex, and the extrapolation error Δ of the vertex
position is given by the covariance

Δ 2 = [y2] = [(a′(r)+b′(r)x+ c′(r)x2/2)2]

= [a′2]+2x[a′b′]+ x2([b′2]+ [a′c′])

+ x3[b′c′]+ x4[c′2]/4 .

(8.41)

Here the [a′2], [a′b′], . . . represent the elements of the covariance matrix E (8.39) at
the position r of the vertex detector.

The evaluation of (8.41) is too clumsy when done in full generality, and we will
consider the special case of a vertex detector that is much more accurate than the
drift chamber at r, as presented in Table 8.3:

f 2 	 1

or
ε2

v 	 [a2(r)] . (8.42)

The covariance matrix at r for the ensemble of chamber and vertex detector, in first
order of ε2

v /[a2(r)], takes the form

E =

⎛
⎜⎜⎝

ε2
v ε2

v [ab]/[a2] ε2
v [ac]/[a2]

ε2
v [ab]/[a2] [b2]− [ab]2/[a2] [bc]− [ab][ac]/[a2]

ε2
v [ac]/[a2] [bc]− [ab][ac]/[a2] [c2]− [ac]2/[a2]

⎞
⎟⎟⎠ . (8.43)

The elements of E depend on N and r. We evaluate (8.43) in the limit of N → ∞ and
for some special values of r. For r = 1/2 (i.e. the vertex detector at the same place
as the last wire), using (8.41), (8.42), (8.28), (8.22), one finds that

Δ 2 =
ε2

N +1

(
48

x2

L2 +120
x3

L3 +80
x4

L4

)
+ ε2

v

(
1+8.0

x
L

+6.7
x2

L2

)
.
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Fig. 8.5a,b Graph of the two
functions in (8.44) for four
positions r of the vertex
detector; (a) R(r,x/L), (b)
S(r,x/L)

Here we have counted x/L positive if x and xv point in the same direction. We see
that the vertex extrapolation accuracy deteriorates as x/L increases. There is one
term proportional to the accuracy squared of the vertex detector alone, and one term
proportional to the quantity ε2/(N +1), which characterizes the accuracy of the drift
chamber.

Δ 2 = R2
(

r,
x
L

) ε2

N +1
+S2

(
r,

x
L

)
ε2

v . (8.44)

Figure 8.5a,b contains graphs of R(r,x/L) and S(r,x/L) for four values of r in the
range of typical applications.

Taking again the geometry of the ALEPH experiment as a numerical example,
we read from Fig. 8.5a,b that for r = 0.77 and xv = 6.5cm the vertex extrapolation
accuracy can reach Δ =

√
(0.282ε2/21 + 1.142ε2

v ). Using ε = 160μm and εv =
20μm one obtains Δ = 25μm in this particular case.

8.4 Limitations Due to Multiple Scattering

The achievable accuracy of a chamber may be reduced by multiple scattering of the
measured particle in some piece of the apparatus. There it suffers a displacement
and a change in direction, and we want to know the influence on the accuracy of
vertex reconstruction and of momentum measurement.

8.4.1 Basic Formulae

The theory of multiple scattering has been developed by Moliere, Snyder, Scott,
Bethe and others. Reviews exist from Rossi [ROS 52], Bethe [BET 53] and Scott
[SCO 63]. Our interest here must be limited to the basic notions.
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After a particle has traversed a thickness x of some material, it has changed its
direction and position, and we want to know the two-dimensional probability distri-
bution P(x,y,θy) of the angular and spatial variables θy and y. Here we describe in a
Cartesian coordinate system the lateral position at a depth x by the coordinates y and
z. The corresponding angles are denoted by θy (in the x–y plane) and θz (in the x–z
plane). Because of the symmetry of the situation, the two distributions P(x,y,θy) and
P(x,z,θz) must be the same. In the simplest approximation they are given [ROS 52]
by

P(x,y,θy)dy dθy =
2
√

3
π

1
Θ 2

s x2 exp

[
− 4

Θ 2
s

(
θ 2

y

x
− 3yθy

x2 +
3y2

x3

)]
, (8.45)

where the only parameter Θ 2
s is called the mean square scattering angle per unit

length. The angular distribution, irrespective of the lateral position, is given by the
integral

Q(x,θy) =
∞∫

−∞

P(x,y,θy)dy =
1√
π

1
Θs

√
x

exp

[
−

θ 2
y

Θ 2
s x

]
. (8.46)

We have for this projection a Gaussian distribution with a mean square width of

〈θ 2
y 〉 = Θ 2

s x/2 . (8.47)

Since the basic process is the scattering with a single nucleus, we understand
that the variance of θy must be proportional to the number of scatterings, and
hence x.

The corresponding spatial distribution, irrespective of the angle of deflection, is
given by the integral over the other variable:

S(x,y) =
∞∫

−∞

P(x,y,θy)dθy =

√
3
π

1

Θs

√
x3

exp

[
− 3y2

Θ 2
s x3

]
. (8.48)

This Gaussian distribution has a mean square width of

〈y2〉 = Θ 2
s x3/6 . (8.49)

For completeness we mention that the covariance is given by

〈yθy〉 =
∫

yθyP(x,y,θy)dy dθy = Θ2
s x2/4 . (8.50)

The mean square scattering angle per unit length, Θ 2
s , depends on particle veloc-

ity β and momentum p as well as on the radiation length Xrad of the material:

Θ 2
s =

(
Es

βcp

)2 1
Xrad

. (8.51)
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The constant Es, which has the dimension of energy, is given by the fine-structure
constant α and the electron rest energy mc2:

Es =
(

4π
α

)1/2

mc2 = 21MeV . (8.52)

Using (8.52) and (8.51) in (8.50) and (8.49) we may express the projected r.m.s.
deflection and displacement as

√
〈θ 2

y 〉 =
15MeV

βcp

√
x

Xrad
, (8.53)

〈y2〉 =
x
3

√
〈θ 2

y 〉 . (8.54)

A short list of scattering lengths for some materials of interest in our context is given
in Table 8.6. It is extracted from [TSA 74]; see also [PAR 04].

In Moliere’s theory [MOL 48], which represents the measurements very well
(see BET 53), the Gaussian distribution of the scattering angle is only one term in a
series expansion. The effect of the additional terms is that the Gauss curve acquires
a tail for angles that are several times as large as the r.m.s. value. Although only at
the level of a few per cent compared to the maximum, they are many times larger
than the Gauss curve for these arguments. The tail is caused by the few rare events
where one or two single scatters reach a deflection several times as large as the r.m.s.

Table 8.6 Radiation lengths Xrad and densities ρ of some materials relevant for drift chambers

Material ρ Xrad Xradρ

Gases (N.T.P.) (g/l) (m) (g/cm2)

H2 0.090 6800 61.28
He 0.178 5300 94.32
Ne 0.90 321.6 28.94
Ar 1.78 109.8 19.55
Xe 5.89 14.4 8.48
Air 1.29 284.2 36.66
CO2 1.977 183.1 36.2
CH4 0.717 648.5 46.5
Iso−C4H10 2.67 169.3 45.2

Solids (g/cm3) (cm) (g/cm2)

Be 1.848 35.3 65.19
C 2.265 18.8 42.70
Al 2.70 8.9 24.01
Si 2.33 9.36 21.82
Fe 7.87 1.76 13.84
Pb 11.35 0.56 6.37
Polyethylene CH2 0.92–0.95 ∼ 47.9 44.8
Mylar C5H4O2 1.39 28.7 39.95
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sum of the large majority of events, which are dominated by small-angle scattering
alone. This behaviour is typical for Coulomb scattering as described by the Ruther-
ford formula; for hadrons, nuclear elastic scattering also makes a contribution to the
tail. All the theories that go beyond the simple approximation discussed above are
analytically quite complex.

Highland [HIG 75] has taken a practical standpoint by fitting the width of the
scattering-angle distribution of the Moliere theory to a form similar to (8.53), using
the radiation lengths as listed in the Particle Data Tables (and partly in our Table 8.6).

He finds that the width of Moliere does not vary appreciably with the nuclear
charge number Z; he introduces an x-dependent correction factor (1 + ε(x)) to
(8.53), which redefines the energy constant. His result is

θ 1/e
y =

14.1MeV
βcp

√
x

Xrad

(
1+

1
9

log10
x

Xrad

)
. (8.55)

θ 1/e
y is the angle in the x–y plane at which the Moliere probability density is down

by a factor of 1/e from the maximum. Formula (8.55) is supposed to be accurate to
5% in the range 10−3 < x/Xrad < 10, except for the very light elements, where the
accuracy is 10–20%.

8.4.2 Vertex Determination

At colliders the observation of primary vertices and of secondary vertices from par-
ticles with short lifetimes is through a vacuum tube; in addition there is the material
of the vertex chamber itself. We would like to compute the vertex localization error
due to multiple scattering in these materials. The situation is sketched in Fig. 8.6.
We assume for simplicity that the track is infinitely well measured outside the scat-
tering material. Upon extrapolation, it misses the vertex position by the distance d.
The average over the square of d is equal to

〈d2〉 = 〈ϑ 2
1 〉r2

1 + 〈ϑ 2
2 〉r2

2 + · · · , (8.56)

where the mean squared projected scattering angle 〈ϑ 2
1 〉 is given by the thickness ti

of the layer i in units of radiation lengths of the material i according to (8.53), where
〈ϑ 2〉 = 〈θ 2

y 〉. We express the r.m.s. value of d in terms of a ‘Coulomb scattering

Fig. 8.6 Coulomb multiple
scattering of an infinitely well
measured track
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limit’ Sc of the vertex localization accuracy. By combining (8.56) and (8.53) we
have √

〈d2〉 =
Sc

β pc
, (8.57)

with
Sc = 15MeV

(
∑ tir

2
i

)1/2
. (8.58)

Practical values of Sc range between 45 and 200μm GeV for various experiments;
compare Table 11.3.

The above calculation gives correct vertex errors in the limit that the Coulomb
scattering is much larger than the measurement errors and that all the scattering ma-
terial is between the sense wires and the vertex. For the general case the estimation
of vertex errors is more involved. Although the quadratic addition of measure-
ment errors (8.7) and the multiple-scattering errors (8.57) gives the right order of
magnitude for the total, more sophisticated estimation methods give better results.
Lutz [LUT 88] has developed an optimal tracking procedure by fitting the individual
contributions to multiple scattering between the measuring points.

8.4.3 Resolution of Curvature for Tracks Through
a Scattering Medium

We have seen in (8.53) that the mean square scattering angle increases as the
momentum of the particle becomes smaller. Let us imagine a drift chamber in a
spectrometer where the momentum of a particle is low enough to make the multiple-
scattering error the dominating one. We would like to know the accuracy for a
measurement of the curvature in this situation; this implies we suppose that the ac-
curacy of the apparatus itself is infinitely better than the multiple-scattering errors.

We resume the arguments of Sect. 8.2 at (8.2.1). In order to evaluate [ynym] in the
case of multiple scattering, we observe that

[ynym] = [yn(yn +(xm − xn)θyn] = [y2
n]+ (xm − xn)[ynθyn] (8.59)

for xm ≥ xn. Now we make use of (8.49) and (8.50) and obtain

[ynym] = Θ 2
s x2

n(3xm − xn)/12 . (8.60)

Gluckstern [GLU 63] has evaluated the correlation coefficients at the first of
N +1 uniformly spaced wires with the result

[c2]MS =
Θ 2

s

2L
CN ,

[
cb

(
1
2

)]
MS

= −Θ 2
s

2
DN , (8.61)
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Table 8.7 Values of the factors CN ,DN and EN in (8.61) for various values of N

N CN DN EN

2 1.33 0.167 0.167
3 1.25 0.125 0.154
4 1.25 0.124 0.160
5 1.26 0.132 0.167
9 1.31 0.156 0.187
infin. 1.43 0.214 0.229

[
b2
(

1
2

)]
MS

=
Θ 2

s

2
LEN .

The N-dependent coefficients are listed in Table 8.7.
Let us note that the measurement accuracy

√
[c2] for the curvature in this

multiple-scattering-limited case is inversely proportional to the square-root of the
length. Also, the variations of b and c are much more independent than they were in
the measurement-limited case (8.32), because the ratio DN/

√
(CNEN) is relatively

small.
The problem of optimal spacing and optimal weighting has been treated by

Gluckstern [GLU 63] as well as by some other authors cited in his paper.

8.5 Spectrometer Resolution

Much of the effort of constructing precise drift chambers was for the goal of high-
resolution magnetic spectrometers. In this section we want to collect our results
concerning the measurement errors of curvature and to express them in terms of
momentum resolution. We are concerned with measurements inside a homogeneous
magnetic field. There were two limiting cases, the one caused by measurement er-
rors, in the absence of multiple scattering, and the other due to multiple scattering,
with zero measurement errors.

8.5.1 Limit of Measurement Errors

We noted before that the variance [c2] of the curvature is a function of the track
length L, the point-measuring accuracy ε , and the number N + 1 of wires, but it
does not depend on the curvature itself. For uniform wire spacing we had (8.24)

[c2] =
ε2

L4 AN (AN in Table 8.2)

and for wires with optimum spacing (8.34)

[c2] =
ε2

L4

256
N +1

.
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The track length is understood to be measured in a plane orthogonal to the magnetic
field.

In order to calculate the momentum resolution, we use (8.9) and (8.11) and ex-
press the r.m.s. error δ (1/R) =

√
[c2] as

√
[c2] = δ

1
R

= eBδ
(

1
pT

)
= −eB

δ pT

p2
T

=
−3
10

(
GeV/c

Tm

)
B

δ pT

p2
T

. (8.65)

Introducing θ , the angle between the momentum vector and the magnetic field, the
transverse component pT is given by

pT = psinθ . (8.66)

We drop the minus sign and write (8.65) as

δ p
p

= psinθ
10
3

(
Tm

GeV/c

)
1
B

√
[c2] . (8.67)

This formula shows that the spectrometer resolving power, expressed as a percent-
age of the measured momentum, deteriorates proportionally to p. This follows from
the fact that [c2] is independent of c; it is also visible directly in the sagitta s
(Sect. 8.2.3), whose size can be measured with less relative accuracy δ s/s as it
shrinks with increasing momentum.

8.5.2 Limit of Multiple Scattering

In this case the variance [c2] depends on the track length L, the mean square scatter-
ing angle per unit length, Θ 2

s , and very weakly on the number of measuring points.
Θ 2

s in turn is a function of the scattering material and of the β p of the particle. Using
(8.51) and (8.61) we had for uniform wire spacing

[c2]MS =
(

21MeV
βcp

)2 1
Xrad

CN

2L
(CN in Table8.7) . (8.68)

L is the length the track has travelled in the medium and [c2] the variance of
the total curvature. Only a projection on a plane perpendicular to the magnetic
field can be confused with a curvature variation caused by a variation in
momentum,

[c2
proj] = [c2]MS/sin4 θ , (8.69)

because the projected radius of curvature scales with the square of the projected
length. It is [c2

proj]MS to which (8.67) applies in the present case, and we find for the
momentum resolution
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δ p
p

=
p

sinθ
10
3

(
Tm

GeV/c

)
1
B

√
[c2]MS .

=
21(MeV/c)

β sinθ
10
3

(
Tm

GeV/c

)
1
B

√
CN

2LXrad
.

(8.70)

We see that the multiple-scattering limit of the momentum resolution is inde-
pendent of momentum because, as p goes up, the decrease in bending power is
compensated by the decrease in the scattering angle. According to (8.70), a muon
traversing 1 m of magnetized iron (2T) at right angles to the field cannot be mea-
sured better than to 22%, even if there were infinitely many measuring points with
infinite accuracy inside the iron. Depending on the apparatus, L will often be a func-
tion of the angle θ .
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Chapter 9
Ion Gates

Here we wish to take up the subject of ion shutters, which are sometimes placed
in the drift space in order to block the passage of electrons or ions. In Chap. 3 we
introduced such wire grids in the context of the electrostatics of drift chambers,
stressing the relation between the various grids and electrodes that make up a drift
chamber. So far we have dealt with the most straightforward type of gating grid,
where all the wires are at the same potential.

For applications in large drift chambers there are more sophisticated forms of ion
shutters which, in some modes of operation, have different transmission properties
for electrons and for heavy ions.

We will begin this chapter by inspecting the conditions that make it necessary to
involve gating grids (Sect. 9.1). Then we will survey various forms of gating grids
that are in use in particle experiments (Sect. 9.2). Finally we compute values for
the transparency under various conditions for which we make use of the results of
Chap. 2 concerning ion drift velocities and the magnetic drift properties of electrons
in gases.

9.1 Reasons for the Use of Ion Gates

9.1.1 Electric Charge in the Drift Region

Any free charges in the drift volume give rise to electric fields which superim-
pose themselves on the drift field and distort it. Chambers with long drift lengths
L are particularly delicate, especially when they are operated with a low drift field.
The displacement σx of an electron drift path at its arrival point is of the order
of the drift length times the ratio of the disturbing field Edist over the drift field
Edrift:

σx = L
Edist

Edrift
. (9.1)

W. Blum et al., Particle Detection with Drift Chambers, 315
doi: 10.1007/978-3-540-76684-1 9, c© Springer-Verlag Berlin Heidelberg 2008
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This holds if the disturbing field is orthogonal to the drift field, thus causing a
displacement of the field lines to the side, but it also holds if the disturbing field
acts in the same direction as the drift field, thus causing a change in the velocity and
hence of the arrival time, provided the chamber works in the unsaturated mode of
the drift velocity (cf. Chap. 12).

Free charges can originate as electrons or gas ions from the ionization in the
drift volume, travelling in opposite directions according to their proper drift veloc-
ities, or they can be ions from the wire avalanches that have found their way into
the drift region, where they move towards the negative high-voltage electrode. This
last category contributes the largest part because for every incoming electron which
causes G avalanche ions to be produced at the proportional wire, there will be Gε
in the drift space, where ε is the fraction that arrives in the drift space rather than
on the cathodes opposite the proportional wire. If there is no gating grid, Gε will
be of the order of 103 in typical conditions, but could also be larger (see remarks
below).

In order to estimate the size of disturbing fields we consider two examples. The
first is a drift chamber in which a gas discharge burns continuously between some
sense wires and their cathodes. Such a self-sustained process could be caused by
some surface deposit on the cathode, or otherwise. Let the total current be 1μA, and
let ε = 5% of it penetrate into the drift volume. If the ion drift velocity there is 2 m/s,
then the linear charge density in the column of travelling ions is λ = 25× 10−9 A
s/m. Using Gauss’ theorem in this cylindrical geometry, the resulting radial field a
distance r away amounts to

Edist =
λ

2πrε0
= 450(V )

1
r

. (9.2)

Here we have neglected the presence of any conductors.
The second example is the ALEPH TPC, irradiated by some ionizing radiation,

say cosmic rays or background radiation from the e+e− collider. Let the rate density
of electrons liberated in the sensitive volume be R(s−1m−3). For every electron, Gε
ions will appear in the drift space, where they travel with velocity vD. Therefore the
total charge density in the volume has the value.

ρ =
eRLGε

vD
, (9.3)

where e is the charge of the electron and L is the length of the drift volume. ρ could
depend on the radius r, as one would expect from radiation originating along the
beam. Let the TPC be approximated by the space between two infinite coaxial con-
ducting cylinders with radii r1 = 0.3 m and r2 = 2 m, with the drift direction parallel
to the common axis. The cylinders are grounded. The radial field Er is calculated
from Maxwell’s equations,

∇Er =
1
r

∂
∂ r

rEr =
ρ
ε0

, (9.4)
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r2∫
r1

Erdr = 0 .

If ρ(r) = ρ0 does not depend on r, as in the case of irradiation by cosmic rays, the
resulting radial disturbing field takes the form

Er(r) =
ρ0

2ε0

(
r− 1

2r
r2

2 − r2
1

ln(r2/r1)

)
. (9.5)

If we insert into (9.3) values that are characteristic for the ALEPH TPC irradiated
by cosmic rays at sea level (R = 2×106 s−1m−3, vD = 1.5 m/s, Gε = 103,L = 2 m),
we find that ρ0 = 0.43×10−9 A s m−3. Figure 9.1 shows the radial field that results
from (9.5) in this particular example. We notice that it is negative close to the inner
field cage and positive close to the outer one. Compared to the regular axial drift
field of 104 V/m, it amounts to a fraction of a per cent.

It should be mentioned that the coefficient ε is not very well known. A lower limit
can be evaluated assuming that the amplification produced ions uniformly around
the proportional wire. In this case ε is equal to the fraction of electric field lines that
reach from the sense wire into the drift region. Using the formalism of Sect. 3.2 ε
is equal to the ratio of the surface charge densities on the high-voltage plane and on
the sense wire grid:

ε =
|σp|
σs

, (9.6)

typically between 3 and 5%.
However, it is known that the amplification is not isotropic around the propor-

tional wire. This has been discussed in Sect. 4.3. Large avalanches tend to go around
the wire; small avalanches develop on the side where the electrons have arrived. The
ions from the small avalanches may go into the drift space more efficiently. Nothing
quantitative has been published concerning this question.

Fig. 9.1 Radial dependence
of the electric field produced
by a uniform charge
distribution in a cylindrical
TPC. The scales are from the
example discussed in the text
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Some further uncertainty exists concerning the value of vD. The effect of charge
transfer between the travelling ions and any gas molecules of low ionization poten-
tial will substitute these molecules, which are often much slower, for the original
ions; see Table 2.2. This effect creates a space charge that is not uniform in the drift
direction.

The most important contribution to space charge is usually created by the back-
ground radiation at the accelerator. Background conditions can be very different
from one experiment to the other. In the ALEPH TPC at LEP (sensitive volume
45m3) the sense-wire current is ∼ 0.5μA under standard operating conditions. The
UA1 central detector at the CERN Spp̄S (sensitive volume 25m3) had a current of
∼ 120μA at the peak luminosity of 3×1029 cm−2 s−1 [BEI 88].

9.1.2 Ageing

There is experimental evidence of a deterioration in performance of drift and pro-
portional chambers after they have been used for some time. Once the total charge
collected on the anode wires during their lifetime exceeds some value between 10−4

and 1 C per cm of wire length, a loss of gain and excessive dark currents are observed
in many chambers. Whereas a short account of this problem is given in Sect. 12.6,
we mention it in the context of ion gates in order to underline their effect on the
ageing process.

The dose mentioned above is the product of the incoming charge and the gain
factor. The limit of observable deteriorations depend very much on the gas com-
position and on the electric field on the electrode surfaces; under carefully chosen
conditions, a limiting dose of the order of 0.1 to 1 C/cm should be achievable. Some
modern experiments even expect to achieve 10 C/cm (cf. Sect. 12.6). The ageing
process can be stretched in time if only part of the radiation is admitted to the sense
wires, using a gate that is triggered only on interesting events.

9.2 Survey of Field Configurations and Trigger Modes

In order to describe the various forms of gating grids employed in particle ex-
periments we use two classifications, one according to drift paths on the basis of
different (electric and magnetic) field configurations, the other according to the dy-
namical behaviour, i.e. how the gates are switched in connection with events in time.

9.2.1 Three Field Configurations

The simplest gate is the one which has all its wires at the same potential (monopolar
gating grid). We have stated in Sect. 3.3 that it is closed to incoming electrons and
outgoing ions if all the field lines terminate on it, provided the common potential is
large enough and positive (Fig. 3.10b).
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There is a technical difficulty connected with this configuration: any transition
from the closed to the open state must occur in a time interval ΔT comparable to
the electron travel time over a distance small compared to the sensitive drift length,
say ΔT ≈ 1μs or less. The charge brought onto the grid in this short time causes an
enormous disturbance on the nearby sense wires, orders of magnitudes larger than a
signal. One solution to this problem is the introduction of a ‘shielding grid’ between
the gating grid and the anode [BRY 85].

Another way to circumvent this difficulty is to close the gating grid by
ramping two opposite potentials +ΔVg and −ΔVg on neighbouring wires [BRE 80,
NEM 83]. In this case the net amount of charge on the gating grid does not
change, and in a first approximation there is no charge induced in the other elec-
trodes of the drift chamber. This type of grid is called a bipolar gating grid.
In the closed state it has positive charge on every second wire and negative
charge on the wires in between; the drift field lines terminate on the positive
charges.

In the presence of a magnetic field B the drift paths of electrons are no longer
the electric field lines, because their drift-velocity vector has components along B
and along [E ×B] according to (2.6). The exact behaviour is governed by the pa-
rameter ωτ , or the ion mobility multiplied by the magnitude of the B field. This
parameter is always very small for ions in drift chambers but can be much larger
than one for electrons in suitable gases (cf. Chap. 2). If this is the case and ΔVg

is increased from zero, the ions are stopped first, while many of the electrons are
still able to penetrate. The reason is the reduced electron mobility towards the gat-
ing grid wires. As ΔVg is further increased, the gate is finally closed also for the
electrons.

This bipolar gating grid in a magnetic field, with a suitable value of ΔVg,
can therefore be operated as a diode ([AME 85-1] and later but independently
[KEN 84]). The electrons from the drift region make their way through the grid on
trajectories which are bent in the wire direction as well as in the direction orthogo-
nal to both the wires and the main drift direction. See Fig. 9.2 for an illustration of
the principle.

Fig. 9.2 Scheme of the
bipolar grid immersed in a
magnetic field, which makes
it transparent to electrons
while it remains opaque to
ions
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9.2.2 Three Trigger Modes

The simplest case is the bipolar gating grid operated in a magnetic field as a diode. It
does not have to be triggered, and one avoids all switching circuitry and all pick-up
problems. There is a disadvantage to this solution: although the positive ions from
the wire avalanches are not admitted back into the drift space, all the electrons from
the drift region are allowed to produce avalanches. Under conditions where chamber
ageing is a problem, one gives away a factor of the lifetime of the chamber which
depends on the background conditions of the experiment.

The tightest trigger is the one where some counters outside the drift chamber
select the wanted event and open the gate by applying a (bipolar) voltage pulse to
the grid in order to remove the closing potential(s). Depending on the time delay Td

between the moment of the event and the moment the gate has been opened, one
loses a length L of sensitivity given by the electron drift velocity u:

L = Tdu .

This loss can sometimes be avoided at the expense of some background – if
there is a regular time pattern when the events occur, even if they come with low
probability. The ALEPH TPC at LEP is triggered ‘open’ a few μs before every bunch
crossing of the collider. When there is no event, the gate is switched back to ‘closed’.
In this way it is ‘open’ for 6μs out of every 22μs, but it stays ‘open’ long enough to
read an event. This mode has been termed a synchronous trigger, to be contrasted
with the asynchronous trigger described in the previous paragraph. The synchronous
trigger also avoids the disturbance on the signal lines which remains large even with
a bipolar gating grid, owing to small accidental asymmetries between neighbouring
gating-grid wires.

9.3 Transparency under Various Operating Conditions

The transmission properties of a gate can be defined with respect to the incoming
electrons. The electron transparency Te is the ratio between the number of electrons
traversing the grid and the number travelling towards it. In the absence of magnetic
field, Te is given by the corresponding ratio of the numbers of field lines. As a first
example, we have calculated Te in Chap. 3 for the monopolar gate as a function of
the grid potential.

Similarly the ion transparency Ti is the fraction of ions traversing the grid, com-
pared to all the ions travelling towards it. For the synchronous trigger mode we must
also know 〈Ti〉, the time-averaged ion transparency.

In this section, computed and measured transparencies are presented for the static
and for the synchronously pulsed bipolar gate, and for the bipolar gate in a magnetic
field, operated as a diode. For the graphical representation of results and for the
comparison with measurement we use a standardized system of electrodes according
to Fig. 3.6 with wire positions as in the ALEPH TPC.
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9.3.1 Transparency of the Static Bipolar Gate

In order to describe the problem it is convenient to define two surface charge den-
sities, separating the contribution of the wires ramped at positive and negative ΔVg.
The (electron and ion) transparency is zero when the surface charge density of
positive charges is equal in absolute value to the surface charge density on the
high-voltage plane (or larger). The electric field configurations for full and for zero
transparency are shown for our standard case in Fig. 9.3a,b.

To compute the potential difference ΔVg needed to close the gating grid we first
consider the situation in which both the high-voltage plane and the zero-grid plane
are grounded. The general solution is then obtained by superimposing the solution
calculated in Sect. 3.3 when a common voltage Vg is applied to the wires of the
gating grid.

Using the formalism of Sect. 3.3 it can be shown that by applying ΔVg to the
wires of the gating grid we induce a positive charge on the wires at positive potential
producing a positive surface charge density

σ+
Δ =

−ε0
s3

π
ln

πrg

2s3

ΔVg . (9.7)

Fig. 9.3a,b Electric field configuration in the standard case with the bipolar gating grid. (a) gate
open, (b) gate closed
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The wires at negative potential contribute to a negative surface charge density

σ−
Δ = −σ+

Δ , (9.8)

and the total charge variation on the gating grid is 0.
This solution can be superimposed on the one calculated in Sect. 3.3.1 since it

has the same boundary conditions. The total surface charge density of the wires at
potential Vg +ΔVg is

σ+
Δ +

σg

2
, (9.9)

where σg is computed using (3.2.2).
When σ+

Δ +σg/2 is positive the transparency of the gating grid is given by

T = 1− σ+
Δ +σg/2

|σp|
. (9.10)

Only half of the wires of the gating grid contribute to the positive density. This ex-
plains the factor 2 of (9.10). Formula (9.10) has been tested experimentally using
a chamber with wires arranged as shown in Fig. 3.6. We depict in Fig. 9.4a,b the
calculated and measured electron transparencies as functions of ΔVg. There is per-
fect agreement except for the large values of ΔVg where the gate was found not to
be as opaque as calculated, probably because of diffusion, which was omitted in the
calculation.

The conditions for a closed grid are

σ+
Δ +

σg

2
> |σp| = ε0E , (9.11)

where E is the drift field.

Fig. 9.4a,b Electron
transparency T (here called
Te) of a gating grid with 2 mm
pitch, as a function of the
voltage difference ΔVg
applied to adjacent wires. The
points are measurements by
[AME 85-1]; the line is a
calculation according to
(9.10)
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When σg has the limiting value for the ‘full transparency’ condition (see 3.51)
we obtain

σ+
Δ > ε0E

(
1+2π

rg

s3

)
. (9.12)

In the general case, using (3.53), (9.7) and (9.11) one can calculate the minimum
ΔVg needed to close the grid:

ΔVg > − s3

π
ln

(
πrg

2s3

)
⎛
⎜⎜⎝E − E(z3 − z2)+Vg −Vz

2

(
z3 − z2 −

s3

2π
ln

2πrg

s3

)
⎞
⎟⎟⎠ . (9.13)

Figure 9.5a-d shows how the electric field lines are organized around the bipolar gate
as the differential voltage ΔVg is increased. We notice that for small ΔVg the grid is
partly transparent and that for larger ΔVg the field lines from the drift region end on
the wires of the gating grid. The configuration of Fig. 9.5a-db is the case where the
gate is just closed. It has field lines from the two regions in close proximity, so that
diffusion will allow a small fraction of electrons to traverse the grid. This is not the
case in Fig. 9.5a-dc and d, where the gate is more firmly closed.

9.3.2 Average Transparency of the Regularly Pulsed Bipolar Gate

The passage of a drifting electron or ion through a gate requires some time. This time
is much longer for ions than for electrons because of their smaller drift velocity u.

Fig. 9.5a-d Electric field
lines near the gating grid for
different values of
ΔVg.Edrift = 110 V/cm and
Vg = −70 V throughout. (a)
ΔVg = 30 V, (b) ΔVg = 45 V,
(c) ΔVg = 100 V, (d)
ΔVg = 200 V
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Fig. 9.6 Regular switching of the bipolar grid at a frequency f .ΔT is the ‘open’ time

Since the field region across a bipolar grid extends over some fraction of the pitch s
(see Fig. 9.5a-d) we may estimate the time to cross the gate to be roughly

τ = s/u , (9.14)

say between 10 and 1000μs for ions and three orders of magnitude less for electrons.
A bipolar grid can be operated at a frequency f by switching the closing voltage

±ΔVg during some part of every cycle so that it is ‘open’ for the remaining time
Δ t(Δ t < 1/ f ); the switching is schematized in Fig. 9.6.

If τ < Δ t, the grid can be traversed in one cycle, and the average transparency is

〈T 〉 ∼ f Δ t . (9.15)

When τ � Δ t, many cycles are needed to traverse the grid. The electric field
changes many times while the ions are near the grid, and they follow a path that
alters its direction with the variation of the electric field; see Fig. 9.7 for an illus-
tration. Each cycle, during the ‘closed’ condition, the ion makes a step towards the
gate wire at lower potential, and under favourable conditions it reaches the wire and
is absorbed.

For an accurate computation of the transparency we would have to follow the
relevant field lines at every step. But we are satisfied with an order-of-magnitude

Fig. 9.7 Sketch of the ion
path near the gating grid
pulsed at some frequency
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calculation, which will exhibit the main variables and their influence on the average
ion transparency.

We call the effective depth of the grid S – it will be some fraction of the pitch
s – and we assume that the drift field Ed acts all the time whereas the transverse
field Ex between the wires of the gating grid acts only during the time the gate is
closed.

Assuming that an ion needs n cycles for the traversal of the grid,

n =
S f
vx

, (9.16)

it is absorbed if

x0 < n

(
1
f
−Δ t

)
vx . (9.17)

Here vz and vx are the two components of the drift velocity and x0 is the initial
transverse distance of the ion from the closest gating wire at lower potential (see
Fig. 9.7).

The transparency is zero if

s <
S
vz

f

(
1
f
−Δ t

)
vx , (9.18)

where s is the pitch of the gating grid.
We can calculate the transparency in the general case assuming that the ions are

uniformly distributed along x when they reach the region of the gating grid. Using
(9.16) and (9.17) we obtain

〈T 〉 = 1− S
s

vx

vz
(1− f Δ t) . (9.19)

Since the drift velocity of the ions is proportional to the electric field, the ratio
between its components can be replaced by the ratio between the components of
the electric field. The z component of the electric field is the drift field Ed and the
x component can be approximated by 2ΔVg/s. We obtain for the time-averaged ion
transparency

〈T 〉 = 1− S
s

2ΔVg

sEd
(1− f Δ t) . (9.20)

Equation (9.20) shows that within the limits of our very coarse approximations, the
average transparency is a linear function of ΔVg and the frequency f. This is also
borne out by experiment: in Figs. 9.8 and 9.9 we see the result of measurements
[AME 85-2] made with a gating grid operating under conditions similar to those of
the ALEPH TPC. Formula (9.20) describes both curves quite well with values of
S/s between 0.4 and 0.5.
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Fig. 9.8 Average
transparency 〈T 〉 for ions
through a bipolar grid with a
pitch 2 mm, which was pulsed
at 100 kHz with an ‘open’
time of 6μs, and a ‘closed’
time of 4μs, as a function of
the voltage difference ΔV
applied to adjacent wires. The
points are measured by
[AME 85-2]; the straight line
was drawn to connect the
points

9.3.3 Transparency of the Static Bipolar Gate in a Transverse
Magnetic Field

A magnetic field along the main drift direction z changes the path of the electrons
according to the parameter ωτ; see (2.6). The components ux of the drift velocity
perpendicular to the magnetic field and perpendicular to the grid wires is reduced
by the factor 1 +ω2τ2, whereas the drift velocity uz in the main direction stays the
same:

ux =
1

1+ω2τ2 μEx ,

uz = μEz .

(9.21)

Fig. 9.9 Average
transparency 〈T 〉 for ions
through a bipolar grid (pitch
2 mm), which was pulsed
with ΔVg = ±45 V for a
constant ‘open’ time of 6μs,
as a function of the frequency.
The points are measured by
[AME 85-2]; the straight line
was drawn to connect the
points
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Here μ is the electron mobility. We see that there is a strong influence of the mag-
netic field on the operation of the bipolar gate – it is closed at much higher values
of ΔVg, since the relevant drift-velocity component ux, which moves the electrons
towards the wires of the grid, is reduced.

We can construct the drift trajectories when we know the behaviour of ωτ with
the electric field strength E. This could be calculated according to the principles
discussed in Sect. 2.2.3. But for our example we simply use

ωτ = 6(T−1)B for E < 100V/cm ,

ωτ = 6(T−1)B100(V/cm)/E for E > 100V/cm .

Figure 9.10a-d shows the electron drift lines in the x–z plane for a number of
conditions. The electron transparency is computed counting the fraction of drift ve-
locity lines that cross the grid. Comparing Figs. 9.10a-da and b, one observes that
the magnetic field of 1.5 T changed the transparency from zero to about 80%.

Figure 9.11 displays the measured electron transparency of a gating grid with a
pitch of 2 mm in a drift field of 100 V/cm for different values of the magnetic field
[AME 85-1]. One observes that the closing voltage goes up roughly linearly with
the magnetic field.
Displacement of the Electrons along the Wire Direction. The electrons cross the
gating grid in the presence of a component (x) of the electric field perpendicular
to the magnetic field. Owing to the E ×B term of the drift-velocity equation (2.6)

Fig. 9.10a-d Electron
trajectories approaching the
grid from the drift region.
E = 110 V/cm. (a)
ΔVg = 45 V, B = 0, (b)
ΔVg = 45 V, B = 1.5 T, (c)
ΔVg = 70 V, B = 1.5 T, (d)
ΔVg = 200 V, B = 1.5 T
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Fig. 9.11 Electron
transparency vs. ΔVg (here
called ΔV ) for various
magnetic fields, as measured
by [AME 85-1]. The lines are
drawn to guide the eye. The
two squares show the result of
calculations according to
Sect. 9.3.3

they are also displaced along the direction (y) parallel to the wires of the grid. The
component of the drift velocity along the wire direction is

uy =
ωτ

1+ω2τ2 μEx .

This effect is similar to the displacement of the electrons along the sense-
wire direction when they approach the sense wire from the zero-grid region (see
Sect. 7.3.1).

Figure 9.5a-db shows the electric field lines in the region of the gating grid when
the grid is closed for the ions (but not for the electrons if a strong magnetic field is
present). The electric field is roughly constant between two sides of the grid, and its
x component changes sign on the two sides of the same wire. All the electrons that
cross the grid on the same side of a given wire are displaced along y in the same
direction and roughly by the same amount; all the others that pass on the other side
are displaced by the same amount but in the opposite direction. This displacement
can be of the order of fractions of a millimetre and depends on ΔVg, on the magnetic
field and on the gas mixture.

The distribution of the arrival point of the electrons on the sense wire is modified.
This effect influences the spatial resolution in a similar way as the E ×B effect at
the sense wire.

If the pitch of the gating grid and the sense-field grid are the same, it is pos-
sible to choose the sign of ΔVg in such a way that the y displacement at the
gating grid has sign opposite to the y displacement at the sense wire [AME 86].
In this case there is a compensation of the overall E × B effect with a pos-
sible benefit to the spatial resolution; nothing quantitative has appeared in the
literature.
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Chapter 10
Particle Identification by Measurement
of Ionization

Among the track parameters, the ionization plays a special role because it is a
function of the particle velocity, which can therefore be indirectly determined
through a measurement of the amount of ionization along a track. For relativistic
particles this dependence is not very strong, and therefore the amount of ionization
must be measured accurately in order to be useful. The ionization has a very broad
distribution, and a track has to be measured on many segments (several tens to a few
hundred) in order to reach the accuracy required. Fortunately only relative values of
the ionization need to be known between tracks of different velocities.

Whereas in Chap. 1 we dealt with the ionization phenomenon in general terms,
the present chapter is devoted to a discussion of those aspects of ionization that
are important for particle identification. After an explanation of the principle we
elaborate on the factors that determine the shape of the ionization curve, and the
achievable accuracy. Calculated and measured particle separation powers are dis-
cussed next. One section is devoted to cluster counting. Finally, the problems
encountered in practical devices are reviewed.

10.1 Principles

In a magnetic spectrometer one measures the particle momentum through the curva-
ture of its track in the magnetic field. If a measurement of ionization is performed on
this track, there is the possibility of determining the particle mass, thus identifying
the particle. The relation between momentum p and velocity v involves the mass m:

v = c2 p/E = c2 p/
√

(p2c2 +m2c4) , (10.1)

where c is the velocity of light.
Any quantification of ionization involves the peculiar statistics of the ionization

process. Let us recapitulate from Chap. 1 that the distribution function of the number
of electrons produced on a given track length has such a tail towards large numbers
that neither a proper mean nor a proper variance exists for the number of electrons.

W. Blum et al., Particle Detection with Drift Chambers, 331
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In order to characterize the distribution one may quote its most probable value and
its width at half-maximum. The most probable number of electrons may be taken to
represent the ‘strength’ of the ionization. It is not proportional to the length of the
track segment. (We have seen in Figs. 1.10 and 1.11 how the most probable value of
the ionization per unit length goes up with the gas sample length.) From a number of
pulse-height measurements on one track one derives some measure I of the strength
of the ionization; details are given in Sect. 10.3. Since I depends on the velocity of
the particle and is proportional to the square of the charge Ze of the particle, we
write

I = Z2Fg,m(v) . (10.2)

Fg,m(v) depends, firstly, on the nature of the gas mixture and its density (index g).
But it depends also on the length and number of samples and on the exact way in
which the ionization of the track is calculated from the ionization of the different
samples (index m); in addition, there is the small dependence of the relativistic rise
on the sample size. If we divide Fg,m(v) by its minimal value (at vmin), we obtain a
normalized curve

F(norm)
g,m (v) = Fg,m(v)/Fg,m(vmin) . (10.3)

It turns out that this curve is approximately independent of the exact manner of the
ionization measurement:

F(norm)
g,m (v) ≈ Fg(v) . (10.4)

(Some qualifications are mentioned in the end of Sect. 10.8.1) Most analyses of
the ionization loss have been done with this approximation, i.e. one neglects any
variation of the relativistic rise on the sample size and works with one universal
normalized curve.

Figure 1.19 contained theoretical values for the most probable ionization in
argon, as well as experimental values of the truncated mean in argon–methane
mixtures. The abscissa is the logarithm of βγ(β = v/c,γ2 = 1/(1−β 2)), and the
vertical scale is normalized to the value in the minimum.

One cannot resolve (10.1), (10.2) and (10.4) into a form m = m(I, p) because
Fg(v) is not monotonic. Therefore we discuss particle identification by plotting
Fg(v) for various known charged particles as a function of p. Using the argon curve
of Fig. 1.19 we obtain the family of curves shown in Fig. 10.1. We see five curves of
identical shape, for electrons, muons, pions, kaons, and protons; they are displaced
with respect to each other on the logarithmic scale by the logarithms of the particle
mass ratios.

The simultaneous measurement of the momentum and the ionization of a particle
results in a point in the diagram of Fig. 10.1. Complete particle identification takes
place if, inside the measurement errors, this point can be associated with only one
curve. In practice the measurement errors of the ionization are very often so large
that several particles could have caused the measured ionization; if this is the case it
may be possible to exclude one or more particles.

For good particle identification the measurement accuracy δ I is obviously as
essential as the vertical distance between the curves in Fig. 10.1. It is therefore our
first task to review the gas conditions responsible for the shape of the curve and
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Fig. 10.1 Most probable values of the ionization (normalized to the minimum value) in argon at
ordinary density as function of the momenta of the known stable charged particles

in particular for the amount of the relativistic rise. Then we have to understand the
circumstances that have an influence on δ I, and which value of δ I can be reached
in a given apparatus. The ratio of the accuracy over the relativistic rise characterizes
the particle separation power.

But before going into these details let us make an estimate of what we can expect
from this method of particle identification. Imagine some drift chamber with a rel-
ative accuracy of δ I/I = 12% FWHM (5% r.m.s.). If we assume that a respectable
degree of identification is already achievable on a curve that is only twice this r.m.s.
value away from any other one, if we remove the muon curve (because it is hope-
lessly close to the pion curve and because muons can be well identified with other
methods), and if, finally, we assume that the error of the momentum measurement is
negligible, then we can redraw those branches of the curves in Fig. 10.1 that would
allow a respectable degree of particle identification in argon. The result is seen in
Fig. 10.2.

Under the assumed circumstances, these particles could be identified in the
ranges shown in Table 10.1. It is characteristic of the complicated shape of the ion-
ization curve that there are certain bands of overlap in which unique identification is
impossible. A useful separation between kaons and protons at high momenta would
require the measurement accuracy for the ionization to be δ I/I = 8.5% FWHM
or better (in argon at normal density). Such values have actually been attained by
specialized particle identifiers, see Sect. 10.8.

After having described the principle of particle identification based on the
amount of ionization along a given length of track we should also mention the pos-
sibility based on the frequency of ionization along the track. If we were to count the
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Fig. 10.2 The same as
Fig. 10.1 with all lines left out
that either belong to a muon
or that have a neighbouring
line closer than 10% in
ionization (corresponding to a
separation of 2 standard
deviations when the r.m.s.
accuracy is 5%)

Table 10.1 Momentum ranges above 0.1 GeV/c for a 2 σ identification of particles in argon
(normal density), for two measuring accuracies of the ionization (μ’s removed)

Particle Momentum ranges (GeV/c)

δ I/I = 5% r.m.s.
e 0.17–0.4 0.6–0.8 1.3–19
π (0.1)–0.12 0.16–0.8 2.7–19
K (0.1)–0.4 0.6–0.8
p (0.1)–0.8 1.1–1.5
δ I/I = 3.5% r.m.s.
e 0.16–0.5 0.6–0.9 1.1–30
π (0.1)–0.13 0.16–0.9 2.2–30
K (0.1)–0.5 0.6–0.9 6–46
p (0.1)–0.9 1.1–1.5 6–46

number of ionization clusters rather than the amount of ionization on some track
length, there would be a profit in the statistical accuracy. A brief description of this
interesting method is given in Sect. 10.6.

Much easier than the identification of the known particles would be the recog-
nition of a stable quark with charge e/3 or 2e/3, because it would create only 1/9
or 4/9 of the normal ionization density. Quarks aside, one recognizes that relatively
small differences in δ I/I may be decisive for particle identification. Therefore we
must study in some detail how the shape of the ionization curve and the achievable
accuracy depend on the parameters of the drift chamber.

10.2 Shape of the Ionization Curve

We recall from Chap. 1 that the curve reaches its minimum near βγ = 4. The shape
of a curve that has been normalized to this minimum is characterized by the height
of the plateau (‘amount of relativistic rise’, R, above the minimum) and by the value
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Table 10.2 Performance of different gases according to calculations with the PAI model [ALL 82].
A track of 1 m length, sampled in 66 layers of 1.5 cm is assumed. See text for explanation

Gas R (% of min. value) W66 S at 4 GeV/c S at 20 GeV/c
Peak lower upper (% FWHM) e-π π–K K–p e–π π–K K–p

He 58 86 45 15 1.5 0.9 0.3 0.3 0.9 0.5
Ne 57 72 57 13 1.8 1.1 0.4 0.6 1.1 0.6
Ar 57 66 49 12 1.6 1.1 0.4 0.6 0.9 0.6
Kr 63 65 61 11 2.2 1.3 0.5 0.9 1.1 0.7
Xe 67 76 64 13 2.2 1.2 0.4 1.0 1.0 0.6

N2 56 59 48 11 1.8 1.3 0.4 0.7 1.0 0.7
O2 54 54 47 9 2.0 1.5 0.5 0.7 1.1 0.8
CO2 48 52 41 8 2.0 1.6 0.5 0.6 1.1 0.9
CH4 43 45 39 9 1.6 1.5 0.5 0.5 1.0 0.8
C2H4 42 46 38 8 1.7 1.5 0.5 0.6 1.0 0.8
C2H6 38 41 34 8 1.6 1.6 0.5 – – –

C4H10 23 24 21 6 1.8 1.3 0.3 0.6 1.0 0.8
80% Ar+ 55 62 48 12 1.9 1.2 0.4 – – –
20% CO2

of the relativistic velocity factor, γ∗, at which the plateau is reached. Both num-
bers depend on the gas and its density as well as the sample length. In Table 10.2
(Sect. 10.5) we find relativistic rise values calculated by Allison [ALL 82] for vari-
ous gases at normal density and 1.5-cm-long samples. One observes that R is highest
for the noble gases and much lower for some hydrocarbons.

The density dependence is contained in the logarithmic term (1.59) and was
demonstrated in Fig. 1.20. The curve of Fig. 10.3 shows how the relativistic rise
of argon goes down as the density increases. Measured ionization ratios for parti-
cles with 15 GeV/c momentum are contained in Fig. 10.4. All these data show that
the relativistic rise becomes better (higher) as the gas density is decreased and as
one passes from smaller to larger atomic numbers of the elements that make up the
gas.

The small influence of the sample length on the relativistic rise of argon is dis-
played in Fig. 10.5. The relativistic rise goes down from 57 to 53% as the sample
length increases from 1.5 to 25 cm at one bar.

Fig. 10.3 Calculated
variation of the relativistic
rise R of the most probable
ionization with the gas
density (pressure p at constant
temperature) [ALL 82]
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Fig. 10.4 Measured ratio of
the ionization of electrons to
that of pions with momentum
of 15 GeV/c as a function of
the gas pressure for various
gases. The ionization is the
average over the lowest 40%
of 64 samples, each 4 cm long
[LEH 82b]

In a particle experiment, a determination of the ionization as a function of the
particle velocity is done with identified particles over a range of momenta. Once
the function is established it can be used for the identification of other particles.
For this purpose it would be useful to have a mathematical description of the ion-
ization curve. Neither the theory of Bethe, Bloch, and Sternheimer nor the model
of Allison and Cobb offer a closed mathematical form. Fits have sometimes been
based on (1.66) and a piecewise parametrization of the quantity δ , using five or
more parameters for δ (β ). Hauschild et al. have found it possible to work with
only two free parameters for δ (β ) and with a total of four for a description of their
data [HAU 91]. – We have sometimes used the following form for a description of
measured ionization curves:

Fg(v) =
p1

β p4

{
p2 −β p4 − ln

[
p3 +

(
1

βγ

)p5
]}

, (10.5)

where β = v/c,γ2 = 1/(1 − β 2), and the pi are five free parameters. Equation

(10.5) is a generalization of (1.56), valid in the model of Allison and Cobb for
each transferred energy. Figure 10.6 shows four examples of fits to this form.

Fig. 10.5 Calculated
variation of the relativistic
rise as a function of the gas
sample length for argon at
normal density [ALL 82]
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Fig. 10.6 Four different measurements of the normalized ionization strength I/Imin fitted to the
five-parameter form (10.5) [ASS 91]. (a) Data in Ar + CH4 (various small concentrations up to
10%) at 1 bar, combined from [LEH 78], [LEH 82] and ALEPH data (unpublished). (b) Data in
Ar(90%)+CH4(10%) at 1 bar [WAL 79a]. (c) Data in Ar(80%)+CH4(20%) at 8.5 bar [COW 88].
(d) Data in Ar(91%) + CH4(9%) at 1 bar [ALE 91]. A truncated mean was used in all cases to
measure I

10.3 Statistical Treatment of the n Ionization Samples
of One Track

The ionization measurements in the various cells, which we imagine to be of equal
size, are usually entirely independent – the transport of ionization from one cell
to its neighbour caused by the rare forward-going delta rays can be neglected,
and we exclude the effect of diffusion or electric cross-talk between neighbouring
cells. With each well-measured track we obtain n electronic signals which, up to a
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common constant, represent n sample values of the ionization distribution in a cell.
The task is to derive from them a suitable estimator for the strength of the ionization
in the cell.

The most straightforward, the average of all n values, is a bad estimator which
fluctuates a lot from track to track, because the underlying mathematical ionization
distribution has no finite average and no finite variance (see (1.33). A good estima-
tor is either derived from a fit to the shape of the measured distribution or from a
subsample excluding the very high measured values.

In many cases one knows the shape of the signal distribution, f (S)dS, up to a
scale parameter λ that characterizes the ionization strength. The n signals S1, . . . ,Sn

are to be used for a determination of λ . Let λ be fixed to 1 for the normalized
reference distribution f1(S)dS. Then there is a family of normalized distributions

fλ (S)dS = (1/λ ) f1(S/λ )dS , (10.6)

and one must find out which curve fits best the n signal values. The most efficient
method to achieve this is the maximum-likelihood method. It requires one to maxi-
mize with respect to λ the likelihood function

L = ∏i(1/λ ) f1(Si/λ ) , (10.7)

where the product runs over all n samples. The result is a λ0 and its error δλ0. One
may take λ to represent the most probable signal of the distribution; then λ0 ±δλ0

is the most probable signal measured for the track at hand.
So far, it has been assumed that the shape of the ionization curve is the same (at a

given gas length) for all ionization strengths, i.e. particle velocities. For very small
gas lengths this is not really true (see Fig. 1.21). In this case one needs a table of
different curves rather than the simple family (10.6). The rest goes as before.

For a general treatment of parameter estimation, the likelihood method, or the
concept of efficiency, the reader is referred to a textbook on statistics, e.g. Cramér
[CRA 51] or Fisz [FIS 58] or Eadie et al. [EAD 71].

If one does not know the shape of the signal distribution beforehand, one may
use a simplified method, the method of “the truncated mean”. It is characterized by
a cut-off parameter η between 0 and 1. The estimator 〈S〉η for the signal strength is
the average of the ηn lowest values among the n signals Si:

〈S〉η =
1
m

m

∑
1

S j ,

where m is the integer closest to ηn, and the sum extends over the lowest m elements
of the ordered full sample (S j ≤ S j+1 for all j = 1, . . . ,n− 1). The quantity that
matters is the fluctuation of 〈S〉η divided by its value; if for a typical ionization
distribution one simulates with the Monte Carlo method the measurement of many
tracks in order to determine the best η , one finds a shallow minimum of this quantity
as a function of η between 0.35 and 0.75. In this range of η it is an empirical fact
that the values of 〈S〉η are distributed almost like a Gaussian. In many practical
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experiments the method of the truncated mean was the method of choice, because of
its simplicity and because the likelihood method had not given recognizably better
results. From a theoretical point of view, the likelihood method should be the best
as it makes use of all the available information.

Whatever the exact form of the estimator, we assume that it is a measure of
the amount of ionization, which obeys (10.2), and that the approximation (10.4) is
sufficiently well fulfilled for a practical analysis.

10.4 Accuracy of the Ionization Measurement

We have to understand how the accuracy of the ionization measurement of one track
varies with its length L and the number n of samples, with the nature of the gas and
with its pressure p. Since the distribution in a given gap with length x = L/n depends
only on the cluster-size distribution and on the number of primary interactions in
the gap, the ionization distribution varies with the density (or pressure at constant
temperature) in the same way as it does with x, and therefore the width W of the
distribution depends on x and p through their product xp. The relative accuracy will
therefore be of the form

δ I
I

= f (xp, n, gas) or g(Lp, n, gas) .

10.4.1 Variation with n and x

If a track of length L is sampled on n small pieces of length x, we may expect that
the accuracy δ Imp in the determination of the most probable-value improves when
we increase n and L, keeping x fixed. Different values of n may arise for tracks in
one event, depending on the number of samples lost because of overlapping tracks.
If the basic distribution of the ionization gathered in one piece x were well behaved
in the sense of having a mean and a variance – a prerequisite for an application of
the central-limit theorem of statistics – then the accuracy would become better with
increasing n and L according to the law δ Imp ∼ 1/

√
n in the limit of large n. It turns

out that with the very special cluster-size distribution of Chap. 1 the gain is more
like n−0.46 for practical values of n when dealing with a maximum-likelihood fit for
the most probable value [ALL 80]. Walenta and co-workers obtained n−0.43 when
dealing with the average 〈I〉40 of the lowest 40% [WAL 79]. The differences in the
exponent seem to be small but they count for large n! In any event one deals here
with empirical relations that have not been justified on mathematical grounds.

If we vary L and x simultaneously, keeping n fixed, we must consider how the
width of the ionization distribution changes with the size x of the individual sample.
The variation of L and x at constant n could be produced by increasing the gas
pressure in a suitable multiwire drift chamber.
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As the gap is made larger, W decreases. This has been treated in Chap. 1 (see the
discussion around (1.37) and Fig. 1.10). The experiments suggest a power behaviour
of the relative width W on a single gap, which varies like

(W/Imp)1 : (W/Imp)2 = [(px)1 : (px)2]k = [(pL)1 : (pL)2]k (10.8)

(Imp = most probable ionization). Based on the PAI model and supported by experi-
mental data one finds that k = −0.32 [ALL 80].

Next we keep the length L = nx fixed and increase n, reducing x. Now there is a
net gain in the accuracy δ I proportional to

n−0.14 or n−0.11

because the better accuracy from the increase of n is partly offset by the worsening
from the decrease in x.

Although there is agreement between the different authors about these facts,
they disagree about the question down to what subdivision this rule holds. Whereas
Allison and Cobb, on the basis of their theory and in accordance with the above, rec-
ommend sampling the ionization as finely as possible [ALL 80], Walenta suggests
that below 5 cm bar in argon the improvement is negligible [WAL 79]. Lehraus et
al., from a more practical point of view, argue similarly [LEH 82a]. It must be said
that, at the time, such fine samples had not been systematically explored. More re-
cently the ALEPH and the DELPHI TPCs, working at normal gas density and with
4 mm sense-wire spacing, sample remarkably thin gas layers. Figure 10.7 shows an
ALEPH study [ASS 90] in which lepton tracks from e+e− interactions were an-
alyzed by adding the signals from neighbouring sense wires, thus varying n and
x at fixed L. Though not quite reaching the theoretical prediction (see below), the
measured accuracy as a function of n lends some support to the idea that fine subdi-
visions down to half a cm bar may still increase the accuracy.

10.4.2 Variation with the Particle Velocity

We have seen how the single-gap width W is reduced by multiple measurements.
The value of W itself results from the summation over the cluster-size distribution

Fig. 10.7 Ionization
resolution at constant track
length as a function of the
sample length. Crosses:
measured in the ALEPH-TPC
(average track length 140 cm,
argon (91%) + methane (9%)
at 1 bar, diffusion < 1.4 mm
r.m.s.). Line: prediction of
Allison and Cobb, our (10.9)
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Fig. 10.8 Variation of the
single-gap relative width with
the particle velocity factor
βγ , according to the PAI
model for an argon sample of
1.6 cm length (N.T.P.).
(Adopted from [ALL 80],
Fig. 4.1)

(see Sect. 1.2.4). Does W depend on the particle velocity? This must be suspected,
because the number of primary interactions does, and so does the cluster-size dis-
tribution, although only very weakly. In the PAI model also this detail has been
computed. We see in Fig. 10.8 the dependence of the relative width W/Imp on the
relativistic velocity factor βγ , which reflects the characteristic shape of the ioniza-
tion curve. In the example at hand, which is 1.6 cm of argon, W/Imp oscillates inside
a narrow band of (80± 7)% as βγ increases from 1 to the plateau. One concludes
that the velocity dependence of the relative width can usually be neglected in this
range.

10.4.3 Variation with the Gas

We finally have to involve the properties of the gas itself; they will determine the
absolute scale of the accuracy δ I/I when px and n are specified. The pulse-height
distributions of many gases have been measured in single and multiple gaps. From
the work of the Lehraus group [LEH 82b] we present in Fig. 10.9 a compilation
of measured single-gap ionization widths of various gases at different densities. It
turns out that the noble gases have wider distributions than the organic molecular
gases.

With the PAI model, Allison and Cobb calculate for argon ([ALL 80], equation
4.3) a value which represents some average over the particle velocities:

δ Imp/Imp = 0.96n−0.46(px)−0.32 (FWHM) . (10.9)

A systematic comparison between different gases is possible using the dimen-
sionless scaling variable

ξ/I = 2πNr2
e mc2x/(β 2I) . (10.10)

We have encountered the variable ξ with the dimension of an energy, as the
main factor in the Bethe–Bloch formula (1.65) determining the energy lost in
the gas thickness x, to be multiplied only by a β -dependent factor of the or-
der of unity. (N = electron density, re = classical electron radius = 2.82 fm,
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Fig. 10.9 Single-gap resolution measured for various gases and pressures [LEH 82b] as a function
of the product of pressure p and sample length x

mc2 = rest energy of the electron, β = particle velocity in units of the velocity
of light.) We have also met the variable ξ as the scaling factor (1.49) in the Landau
distribution.

The mean ionization potential I is the only constant in the Bethe–Bloch formula
that characterizes the gas; see Table 1.3. The ratio ξ/I will be roughly proportional
to the number of electrons liberated over the distance x, and therefore it is plausible
that it might serve in a comparison of accuracies δ I/I. For β = 1 and gas layers of
1 cm, ξ/I takes on the values 0.32, 0.50, 0.62, 0.65, and 0.70 for the noble gases
He, Ne, Ar, Kr, and Xe at N.T.P., respectively.

From the work of Ermilova, Kotenko and Merzon [ERM 77], Fig. 10.10 con-
tains calculated values of the width of the ionization distribution in a single gap, for
various noble gases, plotted as a function of the ratio ξ/I. The full width at half
maximum is expressed in units of ξ . We notice that the points of the different gases
and sample lengths x fall roughly on one universal curve, which only depends on
ξ/I. We also notice that for ξ/I near 1 the theoretical predictions for the width of
Landau and Blunck–Leisegang (see Sect. 1.2.5) differ by half an order of magni-
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Fig. 10.10 The widths of the ionization distributions in units of ξ for the noble gases, calculated
for various sample lengths by Ermilova et al., plotted as a function of ξ/I (10.10) [ERM 77]. The
points calculated by a Monte Carlo method follow a universal dependence of ξ/I

tude; on the other hand, the Monte Carlo calculation of Ermilova et al., which is
very similar to the subsequent PAI model, accurately predicts the measured widths.
The three calculations and the experimental points fall generally together only for
ratios ξ/I larger than about 50.

Using the universal variable ξ/I Allison and Cobb generalized relation (10.9) for
all gases:

δ Imp/Imp = 0.81n−0.46(ξ/I)−0.32 (FWHM) . (10.11)

It should be emphasized that this formula has not yet been tested experimentally in
a systematic comparison between different gases. The value of the constant is equal
to the value of 0.96(ξ/I)0.32 for 1 cm of argon.

In (10.11) the length of the device is contained in ξ and n, the gas pres-
sure in ξ . If we want to make their influence more visible we may calculate
from (10.9) the relative accuracy obtainable with a device 1 m long containing
argon gas at N.T.P., and 100 samplings; the result is δ Imp/Imp = 0.115. The
value of ξ varies between different gases in the ratio of their atomic charge
number Z. Therefore we have for the general case of a gas, characterized by Z
and I,

δ Imp

Imp
= 0.115

(
1mbar

Lp

)0.32(ZArI
ZIAr

)0.32(100
n

)0.14

(FWHM) , (10.12)
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where L is the length, p the gas pressure and n the number of samplings; I
indicates the average ionization potential as used in the Bethe–Bloch
formula.

10.5 Particle Separation

In order to judge the power of particle separation for a certain gas and wire arrange-
ment we must combine the results of Sects. 10.2 and 10.4. Generally speaking, the
figure of interest is the ratio δ I/(IR). The noble gases have a wider pulse-height
distribution but also a larger relativistic rise, compared to the hydrocarbons investi-
gated. The same compensation is at work with the gas density: as the accuracy δ I/I
becomes better with higher density, the relativistic rise R gets worse; in addition the
saturation of the plateau starts at a lower γ∗. Finer sampling is an advantage even
in the approximation (10.4). In addition, there is the tiny increase, if any, of R with
finer samples.

The performance of various gases, according to calculations with the PAI model,
is compared in Table 10.2 [ALL 82]. These results refer to normal density and to
tracks 1 m long, which are sampled in 1.5 cm intervals. The relativistic rise R is
indicated for the most probable value of the ionization distribution and for the lower
and upper points at half maximum. The full width W66 of the ionization determina-
tion derivable from a maximum-likelihood fit to all 66 measurements is also shown.
The last 6 columns contain particle-pair separation powers S, i.e. for a given pair of
particles at some momentum the difference of the peak positions, divided by W66.
Remarkably, the separation powers of different gases are very similar.

Measurements of the separation power for various gases and pressures have been
performed in a beam of identified particles by Lehraus et al. [LEH 82b]. In their de-
tector with 64 cells, each 4 cm long, they determined simultaneously the difference
between the ionization of electrons, pions and protons and the accuracy δ I (r.m.s.
width of the distribution). The gas and its pressure were varied. Considering the sep-
aration of these particles at 15 GeV/c, the results are expressed as the ratios D/σ ,
equal to

〈Iπ〉40 −〈I p〉40

δ 〈Iπ〉40
or

〈Ie〉40 −〈Iπ〉40

δ 〈Iπ〉40
, (10.13)

plotted against pressure in Fig. 10.11. This diagram contains a summary of much
careful and systematic study. We observe a general decrease below 1 bar and often
a decrease above 2 bar, although there are several gas mixtures, where the pion–
proton separation increases up to 4 bar. In any event, the values of the ratios stay the
same within a few tenths between 1 and 4 bar.

Single-gap measurements in three gases were reported by Walenta et al. [WAL 79]
at 3.5 GeV/c. The measured ratio of peak displacement over the full width is plotted
against pressure in Fig. 10.12. An increase in separation power can be observed at
pressures above 1 bar. The overall picture is that with some gases a profit can be
made by going above 1 bar.
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Fig. 10.11 Pressure dependence of the resolving power (10.13) for various argon gas mixtures, as
measured by [LEH 82a] at 15 GeV/c. The numbers close to the chemical symbols of the quench
gases refer to the concentrations; for example, 20CH4 means 80% Ar+20%CH4

10.6 Cluster Counting

The statistical distribution of the number of ionization electrons produced on a given
track length has a width W (measured at one half of the maximal probability), which
was plotted relative to the most probable ionization Imp in Fig. 1.12 as a function
of the track length. This width is determined by the fluctuation in the number of
primary clusters that occur over this length and by the fluctuation in the cluster size.
It is the latter that dominates; for example, there are 28 primary clusters on 1 cm
bar of argon whose Poissonian fluctuation is only 44% FWHM, whereas W/Imp is
approximately equal to 1, and for 10 cm bar of argon, the corresponding numbers are
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Fig. 10.12 Single-gap
measurements for three
different gases by
[WAL 79a]: ratio of the peak
displacement between pions
and kaons at 3.5 GeV/c to the
width of the distribution,
plotted as a function of the
gas pressure

14% compared to W/Imp ≈ 0.5. The cluster-size distribution P(k) (see Sect. 1.2.4)
dominates because of its 1/k2 behaviour at large k.

Since the number of primary clusters is given with much more relative accu-
racy than the corresponding amount of ionization, one would like to make use of
it for particle identification. The primary ionization cross-section, as a function
of velocity, has a similar behaviour to the ionization curve, the slope of the rela-
tivistic rise being essentially the same. The plateau, however, is reached at a lower
saturation point; this makes the total relativistic rise Rp from the minimum to the
plateau somewhat smaller than it is for the amount of ionization. For details see
Allison [ALL 80].

Measurements of the relativistic rise of the primary ionization cross-section were
reported by Davidenko et al., who used an optical streamer chamber filled with
helium at 0.6 bar [DAV 69]; they measured Rp = 0.38 (difference between plateau
and minimum divided by the value at the minimum). Blum et al. found Rp = 0.6 in
Ne(70) + He(30) at 1 bar using spark chambers [BLU 74]. Although a systematic
evaluation of primary ionization curves is lacking, the effect is obviously strong
enough to make the counting of individual ionization clusters a method which is
interesting because of its promise of accuracy – if only a way could be found to
separate clusters in drift chambers.

One proposal was made by Walenta [WAL 79b]. In his ‘Time Expansion Cham-
ber’, described in more detail in Chap. 11, the drift region is electrically separated
from the amplification region; by using a very low drift velocity, it is possible to
separate individual clusters in time and to register individual electrons with some
efficiency. The basic problem in argon at atmospheric pressure is that the clusters
are so close to each other (28 per cm in the minimum) that even a small amount of
diffusion will wash out the primary ionization pattern. For larger distances between
clusters one would have to employ lighter gases and/or lower gas pressures. We are
not aware of any particle experiment which has successfully used cluster counting
for the identification of particles.
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10.7 Ionization Measurement in Practice

The large multiwire drift chambers provide many coordinate measurements on each
track, and more often than not this includes recording the wire pulse heights. These
are then a measure of the ionization density of each track segment, provided the
chamber is operated in the proportional regime. In the universal detectors the parti-
cles go in all directions, and their ionization is sampled in different ways, depending
on how the track is oriented with respect to the wire array that records it.

There are also more specialized drift chambers, which were built with the express
purpose of particle identification behind fixed-target experiments. There, the parti-
cles travel generally into one main direction, which makes the ionization sampling
much more uniform than it is in the universal detectors.

For good ionization measurements a balance has to be found between two con-
flicting requirements. On the one hand, the wire gain must be kept small in order
to have a signal accurately proportional to the incoming ionization charge. When
the gain is too large, the amplification will drop when the incoming charges are
concentrated along a short piece of wire, owing to space charge near the wire (see
Sect. 4.5), resulting in a gain variation with the amount of diffusion and the track-
wire angle. Furthermore, the positive ions created in the wire avalanches penetrate
to a certain extent into the drift space, where they cause field and hence track and
gain distortions. On the other hand, large signals are required for the coordinate
measurement in order to overcome the electronic amplifier noise; this is particularly
important for coordinate measurements along the wire, using charge division.

The pulse integration must work in such a way that the result is exactly pro-
portional to the collected charge, and especially that it is independent of the length
of the pulse. Otherwise it has to be corrected by a function of the track angle and
the drift length, which both have an influence on the pulse length. In order to have
a clean pulse integration, overlapping tracks must be eliminated with some safety
margin. The number of signals on a track in the middle of a jet of other particles can
therefore be considerably reduced. It is not uncommon that in a large drift chamber
the average number of signals is only little more than one half of the number of
wires that could in principle measure a track.

In order to derive a meaningful ionization of a track, truly independent of all the
external circumstances of the measurement, a number of calibrations and correc-
tions are required at the percentage level of accuracy. These may be grouped in two
categories, according to whether or not they depend on the track parameters.

10.7.1 Track-Independent Corrections

Without going into the details, we just mention the following effects which change
the apparent ionization and therefore have to be kept under control: gas density
(pressure and temperature), concentration ratios of the components, electron attach-
ment, base line and pedestal shift of the electronic channels.
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The response of the individual wires must be the same throughout the drift cham-
ber. At first sight one may argue that the wires measuring the same track are allowed
to have inequalities among each other up to a value small compared only to the
fluctuations of a wire signal (say small compared to 70%). On a closer look, the
requirement of uniformity is more stringent, because the situation changes from one
track to the next. A group of wires may not contribute to the next track because
the track is displaced or because it overlaps with other tracks. So in practice the
wire response must be equalized to a narrower measure. A quantitative evaluation
would obviously have to take into account the geometrical details of the situation.
Although such equalization can be achieved by determining a correction factor for
each wire, matters are simpler when the hardware is already made quite uniform
by respecting tight tolerances on the gain and time constants of the charge-sensitive
amplifiers.

10.7.2 Track-Dependent Corrections

The amount of track ionization collected on one wire of a grid plane depends on the
track orientation. Let α be the angle between the track and the plane, and let β be
the angle in the plane that the projected track has with respect to the normal to the
wire direction (a track parallel to the wire has α = 0 and β = 90◦). The length x of
track contributing to a signal is equal to x0/(cosα cosβ ), where x0 is the distance
between sense wires. We know from Chap. 1 (Fig. 1.10 and the discussion after
(1.49)) that the most probable value Imp of the ionization is not a linear function of
x but can better be approximated by

Imp(x)Imp(x0) = (x/x0)(1+C1 ln(x/x0)) , (10.14)

where the value of C1 can be obtained from Fig. 1.11 or from a Monte Carlo simula-
tion, or experimentally by grouping wires to make larger x;C1 is typically between
0.1 and 0.3. The signals from every track segment have to be divided by the factor
(10.12) in order to be normalized to the standard length x0.

The effect of saturation is described by a length λ on the wire over which the
incoming electrons are distributed; λ is equal to x0 tanβ and has to be convoluted
with the transverse diffusion, which in turn is a function of the drift length z. A first-
order correction could be the following expression, which depends on a constant C2:

I(β )/I(90◦) = 1−C2/λ (β ,z) . (10.15)

This correction is complicated because it is a function of the drift length z as well as
of the angle β ; it is also not quite independent of the amount of ionization itself and
of the angle α .

In a geometry where the wires run orthogonal to a magnetic field, the E ×B
effect causes the drifting electrons to arrive on the wires at an angle ψ (Fig. 7.5a-c);
in this case λ is equal to x0 tan(β −ψ).
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The signal attenuation due to electron attachment requires a correction which
depends on the drift length z through a constant C3:

I(z) = I(0)e−C3 z . (10.16)

Electronic cross-talk between wires can give rise to an α-dependent correc-
tion because the small ‘illegal’ pulses induced on neighbouring wires are prompt,
whereas the normal signal develops according to the arrival time of the electrons.
The time differences between the normal and the small induced pulses depend on α
and will give rise to a variation in the pulse integration.

The corrections discussed above are all interconnected, and it is difficult to isolate
the individual effects. In fact, we do not know a particle experiment in which such
a programme has been successfully completed in all details. Nonetheless, with the
corrections applied, in practice it has usually been possible for the determination of
track ionization to reach a level of accuracy that is not far from that predicted by
(10.9). The reader who is interested in more details of the correction procedure is
referred to the articles by the groups of ISIS2 [ALL 82, ALL 84], OPAL [BRE 87,
HAU 91], CRISIS [TOO 88] and ALEPH [ATW 91].

10.8 Performance Achieved in Existing Detectors

It is appropriate now to describe a small number of wire chambers used in particle
experiments and to compare their ionization-measuring capability with the theory.
Although a systematic discussion of existing drift chambers begins in Chap. 11, we
want to include a few devices here as examples in the context of ionization measure-
ment. We distinguish specialized chambers and universal detectors. The emphasis
is on measurements in the region of the relativistic rise.

10.8.1 Wire Chambers Specialized to Measure Track Ionization

As the progress in accelerator technology made fixed-target experiments possible
in particle beams with momenta up to one hundred GeV/c or more, the relativistic
rise of the ionization in gases was put to the service of identifying the secondary
particles. The first and largest such undertaking was the External Particle Identi-
fier (‘EPI’) behind the Big European Bubble Chamber (‘BEBC’). It consisted of a
stack of 64 rectangular chambers, each 1 m high, 2 m wide and 12 cm deep. Verti-
cal proportional wires – surrounded by field wires – were strung to make sensitive
regions in the gas, shaped like rectangular boxes, 1 m high, and with a 6 × 6 cm2

ground surface, two layers to a frame, each layer 32 boxes wide; see Fig. 10.13.
This arrangement was used as a multiwire proportional chamber hodoscope – the
coordinate information came in steps of 6 cm horizontally, but vertically there was
no subdivision. The ensemble of the 64 frames was 8.5 m long (deep) and weighed
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Fig. 10.13 Layout of the External Particle Identifier and cell structure. The position of the insen-
sitive beam hole is indicated

16 ton. Mounted four metres above the ground, it still looked small compared to the
big magnet of BEBC, which was nearly 16 m away (centre to centre), so the solid-
angle coverage of secondary particles was only 8 m sr. The whole apparatus had to
be movable sideways in order to be able to accept at least a small fraction of the
secondary particles that had the same charge sign as the incoming beam. The lim-
iting aperture was a hole in the iron mantle of BEBC through which the secondary
particles had to leave the zone of interaction.

If the spatial resolution was modest, the same can be said for the time resolution.
The device had to register all the events in one burst, which lasted for only 3μs.
These details are important in the context of pattern recognition and an unambiguous
association of track segments.

For the ionization measurement, enough length was available to reach a very fine
precision. For beam tracks, Lehraus and collaborators reached a resolution of 6 to
7% FWHM, varying slightly with particle species and momentum. This is almost as
good as the theoretical limit of 5.8% derived from (10.9) based on the PAI model.

In Fig. 10.14 we see the ionization of beam tracks consisting of protons and pions
with a momentum of 50 GeV/c. The resolution is so good that a clean identification
of almost every individual particle is possible.

When analysing tracks that emanate from interactions in the bubble chamber,
one loses track segments overlapping with others in the same region (box) of sensi-
tivity. This loss in the number of ionization samples N is an important cause for the
observed deterioration of resolution. The resolution in this overlap region seemed
to deteriorate more quickly than according to the rule N−0.46 or N−0.43 discussed
in Sect. 10.4.1 for clean measurements. In EPI the average number of samples 〈N〉
that remained above a minimal requirement Nmin, for example, was between 72 and
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91 (momentum dependent), resulting in resolutions between 10.6 and 8.7%; see
Table 10.3.

Comparable in size was the large drift chamber ISIS2 (which stands for the ‘Iden-
tification of Secondaries by Ionization Sampling’); it had a length of 5 m and an
aperture of 2 m horizontally times 4 m vertically. A description is found in Chap. 11.
Here we summarize its capabilities as an ionization-measuring device. With more
frequent and finer samplings than EPI, but with reduced length, it should have the
same resolving power, according to (10.9). Although the drift-time measurement
allowed the vertical track coordinates in ISIS to be known to a few millimetres, the
detailed track filtering and subsequent hit association to tracks proved to be criti-
cal for achieving a good resolution. For instance, in a typical study of secondary
tracks in an experiment 10 m behind the small bubble chamber HOLEBC, the aver-
age number of samples retainable per track was 〈N〉= 250, if the required minimum
was set to Nmin = 100. The achieved accuracy was 8.3% FWHM instead of the theo-
retical 6.5% expected for this value of 〈N〉. Whereas such details depend entirely on
the track density in the chamber, they are quoted here to illustrate how the ionization
resolving power goes down with an increasing overlap of tracks.

With this apparatus the most probable ionization density of each track could
be measured with an accuracy of 3.5% r.m.s. and the relativistic rise was 56%.
Using the dependence of the ionization on the particle velocity, as well as the
momenta determined in the spectrometer, useful particle identification was pos-
sible up to 60 GeV. In order to give an impression of the achieved identification
reliability, we show in Fig. 10.15a,b the uniqueness f of the electron–pion sepa-
ration as a function of particle momentum. The parameter f is defined to be the
percentage of correctly identified pions (probability > 1%) whose ionization is in-
compatible with an electron at the 1% level, and this is equal to the percentage
of correctly identified electrons incompatible with a pion. (These ratios could be
measured because there was independent kinematical particle identification for a
sample of events.) Figure 10.15a,bb contains the same for the uniqueness of the
pion–kaon separation.

Fig. 10.14 Distribution of
ionization measured with EPI
in an unseparated positive
beam line, 900 m downstream
of the target, at 50 GeV/c
momentum [LEH 78]
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Table 10.3 Wire chambers specialized in ionization measurement in fixed-target experiments

Chamber EPI ISIS2a CRISIS
Experiment Big European European Hybrid FNAL Hybrid

Bubble Chamber Spectrometer with Spectrometer with
HOLEBC 30’ BC

Reference [LEH 78] [ALL 84] [TOO 88]
[BAR 83] [GOL 85]

Chamber typeb MWPC Stack type 3 drift chamber type 3 drift chamber
Max. no. of samples per track 128 320 192
Sample length (cm) 6 1.6 1.6
Total length of sensitive 7.7 5.1 3.1
volume (m)
Size of entrance window 192×90 200×400 98×102
hor. × vert. (cm)
Max. drift length (cm) 6 200 25
Gas mixture Ar(95)+CH4(5) Ar(80)+CO2(20) Ar(80)+CO2(20)
Pressure (bar) 1 1 1
Gas amplification factor 4000 10000 –
Estimation method employedc 〈S〉40 M–L 〈S〉75

Analysis of beam tracks:
Observed resolution 6.0–7.0 – 7.6–8.0
(FWHM, per cent)
Theoretical limit 5.8 5.8 7.4
(our equation 9.9)

Analysis of secondary tracks:
Min. no. of useful 50 80 100 50
samples required
Average no. of useful (72–91)d (91–109)d 250 140e

samples obtained
Observed resolution (10.6–8.7) (8.7–7.8) 8.3 10
(FWHM, per cent)
Theoretical limit (7.6–7.8) (6.8–6.4) 6.5 8.7
(our (9.9))

Relativistic rise 58 56 � 45
(per cent over the minimum)

a Chamber also described in Sect. 11.7.5.
b Drift chamber definitions, see Sect. 11.1.
c Notation, see Sect. 10.3; M–L is maximum likelihood.
d Depending on momenta of secondaries.
e Our estimate.

The achieved degree of particle identification is also demonstrated in the scatter
plot of momentum vs. ionization of Fig. 10.16. Working with secondary particles
of known masses and momenta, Allison and colleagues were able to compare the
ionization measurement with expectations based on the PAI model. In the plot we
see electrons, pions and protons, but no muons or kaons, because these were not
in the sample of kinematically identified tracks; this simplified the situation. One
can easily make out the regions in the drawing where the measured tracks are un-
ambiguously associated to one line, i.e. identified. Some confusion between pions
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and electrons sets in above 10 GeV/c; protons from pions can be separated to higher
momenta, in the absence of kaons.

The idea of secondary particle identification in a fixed-target experiment was also
the purpose of the construction of CRISIS, which served in the Hybrid Spectrom-
eter at FNAL together with the 30′ bubble chamber. It derived its name as well as
its design principle from ISIS, of which it was a ‘Considerably Reduced’ version:
the length was 3.1 m, the aperture 1 m by 1 m. The drift length was subdivided into
4 separate shorter regions, thus reducing the problem of track overlap. In the anal-
ysis of 100 GeV/c beam tracks, a resolution of 7.6 to 7.9% FWHM was reported,
compared to 7.4 from (9.9).

The measurement of secondaries from beam–nucleus interactions at 100 GeV/c
momentum resulted in a width δ I/I = 10% (FWHM) after requiring more than 50
charge samples for a track. For a comparison with ISIS2 we form the ratio (δ I/I)/R,
which is 0.22 for CRISIS, compared to 0.15 for ISIS2. The group determined the
ratio of the numbers of pions to the numbers of protons/antiprotons as a function of
momentum on a statistical basis; the presence of kaons could be inferred.

The fact that their plateau was observed near R = 45 per cent above the minimum
is very interesting. In columns 1, 2 and 3 of Table 10.3 we find 58, 56 and ≈45;
these numbers should be equal to within a few per cent. This shows that ionization
measurements of the kind described here depend very much on the individual ex-
perimental procedures (pulse integration, pedestal and other corrections, statistical
treatment), therefore, a universal curve for all experiments with the same gas and
pressure is not applicable. The resolving powers of measurements in the relativistic-
rise region achieved in different experiments are reasonably compared using the
ratio (δ I/I)/R.

Fig. 10.15a,b ISIS2
performance: the uniqueness f
of particle separation as a
function of particle
momentum: (a) electron–pion
separation; (b) pion–kaon
separation. (For the definition
of f, refer to the text.)
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Fig. 10.16 ISIS2 scatter plot of the measured ionization vs. momentum of kinematically identified
tracks with more than 100 samplings. Full circle: electron; cross: pion; open square: proton. The
lines are the expected curves for electrons, pions, kaons (dashed) and protons. The error bars
represent one standard deviation for tracks with 250 samplings [ALL 84]

With this experience, some qualifications are in order concerning our statement

(10.4). The approximate independence of F(norm)
g,m (v) from the index m is with re-

spect to small variations in sample size (as they occur in one experiment owing
to different track directions) and with respect to the statistical estimator. Between
different experiments, Fg(v) can evidently come out different, as a function of the
experimental procedures.

10.8.2 Ionization Measurement in Universal Detectors

From the large detectors described in Chap. 11 we have selected three examples for a
discussion of their capability to determine the ionization of tracks. They are the ones
that show the greatest promise of accuracy using (10.9). All operating essentially
with argon gas, they span a range of gas pressures between 1 and 8.5 bar.

The OPAL chamber looks at a radial track with 159 sense wires, spaced 1 cm;
with the gas pressure at 4 bar, (10.9) predicts a resolution of 6.0% FWHM. When
selecting isolated e- and μ-tracks that can be well measured, the group reaches 7.3%.

In the analysis of hadron jets, losses occurred in the number of useful samples,
owing to the overlap of tracks; the hit numbers of the remaining ones followed a
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Fig. 10.17 OPAL study of
the dependence of the
resolution δ I/I (r.m.s.) on the
number of ionization samples
N used per track. Upper
curve: Minimally ionizing
pions within jets. Lower
curve: Single μ and e tracks
(number of good ionization
samples artificially reduced)
[HAU 91]

distribution between 0 and 159, peaking at 110 with 89% above 40. On average,
well-measured tracks had 94 samples, and a resolution of 8.9% FWHM was ob-
tained. Equation (10.9) predicts 7.6% for these. Again, the deterioration is worse
than would be expected from the reduced number of samples alone.

The OPAL group has made a special study of this effect by plotting in Fig. 10.17
the accuracy reached within jets for minimally ionizing pions as a function of the
number of useful samples. This is compared with data for isolated particles. These
data contain usually the (almost) full number of wires, and these are then artifi-
cially reduced by randomly removing good signals; the remaining number N of
samples was found to determine the accuracy proportional to N−0.43. The curve
for particles in jets is worse than (i.e. lies above) the one for isolated particles, for
every N. We may suspect that problems of space charge near the wires and in the
drift region as well as residual problems of pattern recognition are the cause of this
behaviour.

The PEP-4 TPC can measure a good track 183 times. With the wires spaced
at x = 0.4 cm and the gas pressure 8.5 bar, the individual sample length px is very
similar to that of the OPAL chamber. On the basis of (10.9), one expects a resolution
of 5.9% FWHM, and 6.9% is reached for isolated tracks.

The tracks in particle jets are measured with a resolution of 8.3% FWHM. The
number of lost samples is our own estimate; as in the case of OPAL, it does not fully
account for the reduction in accuracy, compared to the isolated tracks.

The ALEPH TPC is almost twice as large in radius as the PEP-4 TPC and can
measure radial tracks on 340 wires. Operating with atmospheric gas pressure, its
individual sample length is only px = 0.4 cm bar, smaller than in any other drift
chamber. The signals are therefore extremely feeble. In the minimum of ionization,
only eleven clusters contribute on average to the signal of a wire (cf. Table 1.1).
According to (10.9), a resolution of 8.8% FWHM should be expected, and 10.3%
has been reached for isolated tracks.
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Fig. 10.18 Scatter diagram of
ionization strength versus
particle momentum for
multihadronic and dimuon
events in Z0 decays, as
measured with the OPAL Jet
Chamber [HAU 91]

When studying tracks inside jets and of lower momenta, the large magnetic field
(1.5 T; see Table 11.4) poses a special problem: particle tracks below 0.5 GeV/c
coil up inside the chamber and require angular corrections (cf. Sect. 10.7.2) over
a large range of angles. The resolution for hadron tracks is 13.3% FWHM at the
average value of N = 250 samples; this can be compared to the 10.2% expected
from (10.9).

Fig. 10.19 R.m.s.
particle-separation power D
as defined in the text,
achieved with the OPAL Jet
Chamber [HAU 91]
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Table 10.4 Ionization-measuring capability of some universal drift chambers in collider
experimentsa

Drift chamber OPAL Jet Chamber PEP 4 TPC ALEPH TPC
Reference [BRE 87] [COW 88] [ATW 91]

[HAU 91]
Drift chamber typeb 2 3 3
Max. no. of samples per track 159 183 340
Sample length (cm bar) 4 3.4 0.4
Max. drift length (cm) 3–25 100 220
Gas mixture Ar(88)+CH4(10) Ar(80)+CH4(20) Ar(91)+CH4(9)

+ i-C4H10(2)
Pressure (bar) 4 8.5 1
Gas amplification factor 10000 – 5000
Estimation method employedc 〈S〉70. 〈S〉65 〈S〉60

Analysis of isolated tracks:
Min. polar angle required (deg): 45 45 45
Observed resolution 7.3 6.9 10.3
(FWHM, per cent)
Theoretical limitd 6.0 5.9 8.8
(our (10.9))

Analysis of tracks inside jets:
Min. polar angle required (deg): 45 45 45
Min. no. of useful
samples required 40 80 150
Average no. of useful
samples obtained 94 140f 250
Observed resolutione

(FWHM, per cent) 8.9 8.3 ± 0.7 13.3
Theoretical limitg

(our (10.9)) 7.6 6.7 10.2

Relativistic rise observed
(per cent over the minimum) 47 37 57
Measured resolution for isolated
tracks (FWHM), divided by the
observed relativistic rise 0.155 0.186 0.181

aMore details on these chambers can be found in Tables 11.2 and 11.4
bDefinitions Sect. 11.1
cDefinitions Sect. 10.3
dUsing lines 4 and 5 above (the effects of slightly larger average sample size and any loss of
samples are neglected)
ePions in the minimum of ionization
fOur estimate
gUsing lines 5 and 16 above

In a comparison of these three detectors one must consider the different gas pres-
sures. The relativistic rise R, expressed as the percentage difference of the plateau
over the minimum, is better for the smaller pressures. On the other hand, the res-
olution δ I/I is better for the higher pressures. A useful over-all criterion is the
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measured ratio δ I/(IR), which we have computed in the last line of Table 10.4.
The best figure of merit belongs to the OPAL Jet Chamber; for it we show the
scatter diagram of ionization strength versus particle momentum in Fig. 10.18. The
OPAL r.m.s. particle-separation power D for various pairs of particles is plotted in
Fig. 10.19 as a function of momentum. The quantity D12 is defined as the ratio of
the difference of the ionization strengths of the two particles 1 and 2 to the average
resolution

D12 =
|I1 − I2|

(δ I1/I1 +δ I2/I2)/2
.

Experimentally, the two terms in the denominator are equal.
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[BLU 74] W. Blum, K. Söchting, U. Stierlin, Gas Phenomena in spark chambers, Phys. Rev. A
10, 491 (1974)

[BRE 87] H. Breuker et al., Particle identification with the OPAL jet chamber in the region of
the relativistic rise, Nucl. Instrum. Methods Phys. Res. A 260, 329 (1987)

[COW 88] G.D. Cowan, Inclusive π , K and p, p− production in e+e− annihilation at
√

s =
29 GeV, Dissertation, University of California, Berkeley (1988), also Berkeley
preprint LBL-24715

[CRA 51] H. Cramér, Mathematical Methods of Statistics (Princeton University Press 1951)
[DAV 69] V.A. Davidenko, B.A. Dolgoshein, V.K. Semenov, S.V. Somov, Measurements of

the relativistic increase of the specific primary ionization in a streamer chamber,
Nucl. Instrum. Methods 67, 325 (1969)

[EAD 71] W.T. Eadie, D. Dryard, F.E. James, M. Roos, B. Sadoulet, Statistical Methods in
Experimental Physics (North-Holland, Amsterdam 1971)

[ERM 77] V.C. Ermilova, L.P. Kotenko and G.I. Merzon, Fluctuations and the most probable
values of relativistic charged particle energy loss in thin gas layers, Nucl. Instrum.
Methods 145, 555 (1977)

[FIS 58] M. Fisz, Wahrscheinlichkeitsrechnung und mathematische Statistik (translated from
Polish) (VEB Verlag der Wissenschaften, Berlin 111989)

[GOL 85] D. Goloskie, V. Kistiakowsky, S. Oh, I.A. Pless, T. Stroughton, V. Suchorebrow,
B. Wadsworth, O. Murphy, R. Steiner and H.D. Taft, The performance of CRISIS
and its calibration, Nucl. Instrum. Methods Phys. Res. A 238, 61 (1985)



References 359

[HAU 91] M. Hauschild et al., Particle identification with the OPAL Jet Chamber, CERN
preprint PPE/91-130 (August 1991), to appear in Nucl. Instrum. Methods Phys. Res.

[LEH 78] I. Lehraus, R. Matthewson, W. Tejessy and M. Aderholz, Performance of a
largescale multilayer ionization detector and its use for measurements of the rel-
ativistic rise in the momentum range of 20–110 GeV/c, Nucl. Instrum. Methods 153,
347 (1978)

[LEH 82a] I. Lehraus, R. Mathewson and W. Tejessi, Particle identification by dE/dx sampling
in high pressure drift detectors, Nucl. Instrum. Methods 196, 361 (1982)

[LEH 82b] I. Lehraus, R. Mathewson and W. Tejessi, dE/dx measurements in Ne, Ar, Kr, Xe
and pure hydrocarbons, Nucl. Instrum. Methods 200, 199 (1982)

[TOO 88] W.S. Toothackier et al., Secondary particle identification using the relativistic rise in
ionization, Nucl. Instrum. Methods Phys. Res. A 273, 97 (1988)

[WAL 79a] A.H. Walenta, J. Fischer, H. Okuno and C.L. Wang, Measurement of the ionization
loss in the region of relativistic rise for noble and molecular gases, Nucl. Instrum.
Methods 161, 45 (1979)

[WAL 79b] A.H. Walenta, The time expansion chamber and single ionization cluster measure-
ment, IEEE Trans. Nucl. Sc. NS-26, 73 (1979)





Chapter 11
Existing Drift Chambers – An Overview

Drift chambers have in common that the drift of the ionization electrons in the gas is
used for a coordinate determination by measurement of the drift time. In this chapter
we want to take a look at the large variety of forms in which drift chambers have
been built for particle physics. As a complete coverage of all existing drift chambers
does not correspond to our plan we subdivide the material according to a geometrical
criterion into three basic types, and then we discuss typical forms within each type.
The selection of chambers is intended to represent the different choices that have
been made in this field, but a certain arbitrariness in choosing the examples was
unavoidable. Of the chambers we know, we have preferred those that are already
working to similar ones that are still in a state of preparation; and those that are well
documented we have preferred to similar ones with less detailed descriptions. We
have considered drift chambers for the detection of charged particles, but not those
for single photons, so the image chambers useful in biology and medicine have been
left out as well as those used to detect Cerenkov radiation.

A description of drift chambers in the context of particle-physics experiments is
given in the review article by Williams [WIL 86].

Let us begin by defining the three basic types.

11.1 Definition of Three Geometrical Types of Drift Chambers

Type 1: The simplest drift chamber is ideally a sensitive area placed across the
path of a particle in order to measure one, or perhaps both, coordinates of the
point of penetration. It was developed out of the multiwire proportional chamber,
or MWPC – a hodoscope of parallel proportional wires – by supplementing the
electronics of the sense wires with equipment to measure the time of the avalanche
pulse and hence the drift time of the ionization electrons. The electric field in the
drift region is shaped, usually with conductors on defined potentials like field wires,
but sometimes also by charges deposited on insulators.

In practice, the ionization electrons of a short piece of track are collected on the
nearest sense wire. For a complete determination of track parameters, such chambers

W. Blum et al., Particle Detection with Drift Chambers, 361
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are often used in stacks of several parallel chambers. The first working drift-chamber
system, which was built by Walenta, Heintze and Schürlein [WAL 71], was of
type 1.

Types 2 and 3: The particle traverses a sensitive volume. The ionization electrons
of a number of track pieces are collected on an equal number of sense wires, and
several coordinates are measured along the track. Such an arrangement allows the
measurement of track directions and, if a magnetic field is present, of track curva-
ture. If the sampling of ionization along the track is done often enough, there is
the possibility of determining the ionization density to a degree useful for particle
identification.

One type of volume-sensitive drift chamber consists of an arrangement of a large
number of parallel or almost parallel sense wires that span the volume, usually in-
terleaved with equally parallel field-shaping wires: this we call type 2.

Chambers of type 2 may be thought of as consisting of many chambers of type 1
in the same volume. Obviously there is no sharp dividing line between types 1 and 2.
We will call a drift chamber that presents a sensitive area to the penetrating particle,
but measures the particle track with several sense wires, a ‘type 1 multisampling
chamber’, its depth in the particle direction being considerably smaller than the
linear dimensions that span the area.

A quite different type of volume-sensitive drift chamber is characterized by a
sensitive volume which is free of wires; the wires are located on one or two sur-
faces that delimit the drift region. This we call type 3. Well-known examples are
the universal track detectors that carry the name ‘time projection chambers’ (TPCs).
In their original form they have segmented cathodes (pads) behind their sensitive
wire planes, and the electric field is parallel to the magnetic field; later on, TPCs
were also built without magnetic field. Other type 3 chambers include the large drift
volumes built for particle identification where all tracks are drifted onto one cen-
tral wire plane for ionization measurement, or the spiral drift chamber where the
electrodes are situated on a cylinder mantle.

For a type 3 drift chamber, the use of the name ‘time projection chamber’ is
as vague as the name is fanciful (time cannot be projected). There seems to be
a tendency now for many constructors of new type 3 drift chambers to call their
device a ‘TPC’.

11.2 Historical Drift Chambers

Throughout this book, we are usually not concerned about the originators of each
of the many ideas which together represent our knowledge about drift chambers. In
this section we want to make an exception and follow the roots of the drift chamber
itself as well as of its two later configurations, the types 2 and 3.

The possibility of using the time of the signal for a coordinate determination
was already recognized by the authors of the paper that introduced the multiwire
proportional chamber, or ‘Charpak chamber’, as it was then called [CHA 68].
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The first studies exploiting the drift time for a coordinate measurement were
done by Bressani, Charpak, Rahm and Zupančič at CERN in 1969 [BRE 69]. It is
here that the word ‘drift chamber’ makes its appearance in the literature. A 3-cm-
long drift space was added to a conventional multiwire proportional chamber with
dimensions 12×12 cm2; it was separated from the drift region by a wire mesh with
90% transparency. The ionization electrons of a beam particle drifted orthogonally
through it onto the sense-wire plane, where they were measured on 15 proportional
wires that were spaced at 2 mm. We reproduce in Fig. 11.1 the historic picture of
this first drift chamber. Drift-velocity measurements and resolution studies were
done with it. The crucial role of diffusion for the accuracy was recognized.

The documentation of this work is not easy to find because it was published in the
proceedings of an International Seminar on Filmless Spark and Streamer Chambers
in Dubna, with contributions mainly written in Russian. The early investigations
were later reported in a wider context by Charpak et al. [CHA 70].

The first operational drift-chamber system including electronic circuitry and dig-
ital readout was built by Walenta, Heintze and Schürlein [WAL 71]. The chamber
was organized in a novel way, consisting of a multiwire proportional chamber with
large wire spacings as shown in Fig. 11.2, where the drift-time measurement gave
the coordinate between the wires, thus improving accuracy and using fewer elec-
tronic channels compared to the MPWC. The ionization of a measured particle was
amplified on one proportional wire. This geometry, which in our classification is
of type 1, was later to be developed into a form where the drift field was extended
and made more homogeneous by introducing field wires on graded potentials. An
example is the type 1 chamber by Breskin et al. schematically shown in Fig. 11.3
[BRE 75]. Further important developments of the drift-chamber technique had been
reported by the CERN group [CHA 73].

If the creation of the drift chamber out of an array of proportional wires was
an important invention which produced many branches of useful particle detectors,
the appearance of one of its principal configurations, the type 2 drift chamber, was
part of a rapid development towards larger drift chambers and represents a much
smaller ‘quantum jump’. When the new e+ e− storage rings like DORIS and SPEAR

Fig. 11.1 Disposition of the electrodes of the first drift chamber. Original drawing by Bressani
et al. [BRE 69]
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Fig. 11.2 Disposition of the electrodes in the chamber built by Walenta et al.

required particle tracking in all directions around the interaction point, the most ob-
vious design was the one where several cylindrical type 1 chambers with increasing
diameters were inserted into one another, each one an entity that could be pulled
out for maintenance. The MARK I drift chambers and the PLUTO spark chambers
were examples of this geometry.

The first genuine type 2 drift chamber was that of the old MARK II detector at
SPEAR [DAV 79]. Its designers had taken the essential step of filling the entire sen-
sitive volume with wires strung between two opposite end-plates, having done away
with all intermediate ring-shaped structures and gas foils, thus paving the way for a
new generation of larger volume-sensitive drift chambers of very high accuracy. A
description of the state of the art in 1981 may be found in [WAG 81] and [FLÜ 81].

The origin of the type 3 drift chambers is in Oxford. The ISIS project for the
Identification of Secondaries by Ionization Sampling was first described in 1973
[MUL 73, ALL 74], and a prototype with an 85-cm-long drift was tested the same
year [see ALL 82]. The basic idea was a large sensitive volume that contained only
gas and an electric field, the track ionization being collected and measured on a
single wire plane. Multihit electronics recorded the drift times of all the tracks of
one event, thus producing a direct image of the event in one projection. The purpose
of the apparatus was not primarily a precise determination of coordinates (for this
the diffusion was too large as a consequence of the long drift) but the measurement
of ionization density for particle identification. A later version of ISIS is described
in Sects. 11.7 and 10.7. ISIS can be considered a predecessor of the TPC.

Fig. 11.3 Disposition of the electrodes in the chamber built by Breskin et al. [BRE 75], cathode
wires at uniformly decreasing potentials produce a long and homogeneous drift field
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The first time the TPC concept appeared on paper was in a laboratory report by
D. Nygren [NYG 74]. The chamber was subsequently built at Berkeley and SLAC
for the PEP-4 experiment. Again, it is not easy to find access to a documentation
of this work. A very detailed description of the PEP-4 TPC is contained in the
experiment proposal of the collaborating institutes [CLA 76]. It was presented to
the appropriate bodies for approval and later widely circulated among workers in the
field. This proposal and its numerous appendices reported on many aspects of the
feasibility of a TPC. Some of this important material has never been published.

Conscious [NYG 83] of the latest work at CERN and at Oxford, Nygren invented
the TPC by performing a synthesis into one instrument of all the known elements:
long drift, diffusion suppression through parallel E and B fields, 3-dimensional co-
ordinate measurement by pick-up electrodes for x and y, and drift-time measurement
for z. This was made possible by a novel storage of the pulse train of every electrode
over the full length of the drift time. The PEP-4-TPC is described in more detail in
Sect. 11.7.

11.3 Drift Chambers for Fixed-Target
and Collider Experiments

A typical fixed-target experiment would have an arrangement of type 1 chambers
that record (together with other detectors) the reaction products behind a target. If
in addition to their directions one also measures the momenta of these particles with
the help of a magnet, then we have a magnetic spectrometer, a typical form of which
is schematically drawn in Fig. 11.4. Stacks of planar type 1 chambers have been in
wide use for such spectrometers.

As for the momentum-measuring accuracy δ p/p at a given bending power pB of
the magnet, the contribution of each arm is, in a first approximation, proportional to
δx/L, the ratio of the chamber point-measuring accuracy to the length of the lever
arm (or thickness of the stack):

δ p
p

= const
p

pB

δx
L

.

Fig. 11.4 A typical magnet
spectrometer behind a fixed
target T, using stacks of type
1 drift chambers (DCs) in
front of and behind the
magnet M
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Often there is freedom to increase L; then the value of δx is less critical, but the
dimensions W of the chambers must be increased in proportion.

For the study of very-high-multiplicity events in heavy-ion fixed-target experi-
ments, even type 3 chambers have become popular. The direct three-dimensional
measurement of track elements is an advantage for such events (see Sect. 11.7).

An important group of drift chambers has been built around the interaction re-
gions of particle colliders where they are – together with the installed calorimeters –
the principal instruments for the investigation of the particles from the collisions.
Close to the interaction point we find the vertex detectors around the beam pipe
whose purpose it is to determine the interaction vertex with high precision. Fur-
ther out in radius the main drift chambers measure the direction and momenta of the
charged particles and, in many cases, their ionization. In the design of these tracking
devices the choice of the magnetic field and its orientation is a primary concern.

11.3.1 General Considerations Concerning the Directions of Wires
and Magnetic Fields

For symmetric electron–positron machines where one studies point-like interac-
tion – these cause essentially isotropic particle distributions – the magnetic field
B was most naturally created by a solenoid on axis with the particle beams. A good
measurement of particle momenta requires the curvature of tracks to be determined
with the greatest accuracy in the azimuthal direction. In drift chambers of type 2
it is the drift-time measurement that provides the accuracy; hence the wires are es-
sentially parallel to the magnetic field (‘axial wire chambers’). In drift chambers of
type 3 the azimuthal accuracy is provided by cathode pick-up electrodes so that the
electric drift field can be made parallel to B. Therefore, in e+ e− machines we find
axial wire chambers and TPC’s along the direction of the beams. Along B, particle
curvature is not measurable.

For the study of hadron interactions in the p̄p and pp colliders, the magnetic field
B has sometimes been chosen to be at right angles to the beam direction, on account
of the important flux of high-momentum particles in the direction of the beams – the
UAI-experiment at the CERN p̄p collider and the Split Field Magnet at the CERN
Intersecting Storage Rings being well-known examples. The orientation of the wires
of type 1 or type 2 drift chambers again has to be parallel to B, which is also the
flight direction of the particles with vanishing curvature.

At the e− p collider HERA at DESY there is an inherent asymmetry in the en-
ergies of the colliding particles, because 30 GeV electrons collide with 800 GeV
protons. The solution adopted for each of the two experiments is a solenoid, coaxial
with the beams, instrumented with a coaxial type 2 chamber, and complemented in
the forward direction of high momenta with several planar type 1 stacks for particles
with polar angles θ approximately between 10 and 30◦. In these type 1 chambers
we find the sense wires orthogonal to the magnetic field, thus giving an accurate
measurement of θ and a good double track resolution in this angular range.
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11.3.2 The Dilemma of the Lorentz Angle

In drift chambers of type 2, for an accurate determination of the curvature of an
ionization track one compares the times of arrival of the electrons from different
track segments on different wires (Fig. 11.5a-ca). The best accuracy is obtained
when the electron drift is at right angles to the track; for then the time differences
measure the curvature directly, and also the electrons of every track segment that
go to the same sense wire are most concentrated in arrival times and hence give the
smallest variance in the measurement (cf. Sect. 7.3).

However, the magnetic field B orthogonal to the electric drift field E forces the
electrons towards the direction given by the vector product – [E × B]. The Lorentz
angle ψ between the drift direction u and E, in the approximation of Sects. 2.1
and 2.2 (2.1.1) is given by

tanψ = ωτ .

Figure 11.5a-cb shows the resulting disadvantage: not only does one have to
measure the sagitta under an angle of projection, but also inside every track segment
the arrival times are spread out more than before. This gives rise to the ‘angular
wire term’ in (7.26), with α = ψ , even if the track is perfectly radial. Therefore,
in this geometry one is obliged to keep ωτ small, although – in the interest of a
good momentum measurement – one wants the largest possible B field. This is the
dilemma of the Lorentz angle.

Since τ is related to the electron mobility μ by the approximate relation
μ = (e/m)τ (for more details see Chap. 2), one way out of the dilemma is to choose a

Fig. 11.5a-c Drift paths of ionization electrons from the particle track to the sense wires. (a)
ωτ = 0 (no magnetic field); (b) ωτ = 1, sense wire plane parallel to the tack; (c) ωτ = 1, sense-
wire plane inclined
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gas with a low mobility (small drift velocity at high E field) and/or a high gas density
N to which τ is inversely proportional by the relation τ = 1/Nσc; cf. Sects. 2.2
and 12.5.

Another way out, but only of part of the dilemma, is a rearrangement of the wires
according to Fig. 11.5a-cc: the plane of the sense wires is made inclined to the radial
direction by the Lorentz angle ψ . This solution has sometimes been adopted for high
magnetic fields. Although this solution brings the drift direction back to the normal
to the stiff radial tracks, the angular wire effect in (7.26) does not vanish for them.
The importance of this effect depends on the radial sense-wire spacing.

11.3.3 Left–Right Ambiguity

The relation between drift time and space coordinate is not always unique. If ion-
ization electrons can reach a proportional wire from two opposite sides, then there
are two space coordinates to correspond to a measured signal time, one of them cor-
rect, the other a ‘ghost’. The situation arises in drift chambers of types 1 and 2, but
usually not in the type 3 chambers. (An exception is treated in Sect. 11.7.5). This
left–right ambiguity can sometimes be resolved with pattern-recognition methods
which take into account that a track produces correct coordinates that are continu-
ous and extrapolate to realistic points of origins whereas the ghost coordinates do
not make sense – provided the wires are arranged accordingly. Another possibility
is the ‘staggering’ of the sense wires, i.e. alternate sense wires are slightly displaced
from their original positions in opposite directions; the correct coordinates are the
ones that combine to form a continuous track. Still another method makes use of
the development of avalanches, which do not go around the whole wire when small
(Sect. 4.3). Suitable pick-up electrodes can identify the side of approach of the drift-
ing electrons [WAL 78, BRE 78].

11.4 Planar Drift Chambers of Type 1

11.4.1 Coordinate Measurement in the Wire Direction

Whereas the principle coordinate measurement in the wire chambers is through the
drift time and therefore orthogonal to the wire direction, for a coordinate measure-
ment along the wire other methods are needed. As we discussed in Sect. 7.1, there
are three such methods: ‘charge division’ and ‘time difference’, based on a pulse
measurement at the two wire ends, and ‘cathode strips’, based on a measurement of
pulses in sections of the cathode.

With these methods it is possible to record the positions of every track segment
(the ionization electrons collected on the wire) in all three dimensions, the position
of the wire and the drift time giving the additional two. For a true three-dimensional
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measurement of track segments with cathode strips these must be short so that every
cathode pulse can be associated from the beginning with its proper wire signal. With
long cathode strips it is only after track reconstruction that this association can be
made. The use of cathode strips in drift chambers has so far been limited to type
1 and type 3 chambers, and short strips (‘pads’) are so far only found in type 3
chambers.

Many spectrometers were built in which a particle had to successively traverse
several parallel drift chambers, which measured only one drift coordinate for the
track; but by arranging the sense wires in different directions, the track was mea-
sured in different stereo directions, thus allowing the full track reconstruction in
three dimensions to be made. For example, a group of 9 parallel chambers could
have chambers 1, 4 and 7 with vertical wires (angle of inclination α = 0), chambers
2, 5 and 8 with wires inclined by α = 45◦, and chambers 3, 6 and 9 with wires at
α = −45◦.

Different from a true coordinate measurement along the wires, this stereo mea-
surement of tracks does not immediately yield three-dimensional coordinate infor-
mation for every track segment. In the pattern of the drift times one would first find
the tracks in the projection of the first group of chambers, then in the second, and so
on; later, the various projected tracks would be combined in space.

11.4.2 Five Representative Chambers

In Table 11.1 we have listed five chambers of type 1 that are or were part of impor-
tant experiments in high-energy physics. In the first two chambers, particle tracks
are sampled once, whereas the last three belong to the multisampling kind.

The CDHS chambers were located between iron plates that were at the same
time the target and the calorimeter plates of this neutrino experiment, so they had to
be large and thin but were not particularly accurate. A relatively simple field-wire
configuration was found to produce a sufficiently uniform drift field if the argon-
isobutane gas mixture was used near saturation. A drift cell and its equipotential
lines are shown in Fig. 11.6. Three identical units (‘modules’) of these hexagonally
shaped chambers, with wire orientations at 0, +60 and −60◦, were stacked between
the iron plates.

The muon identifiers of the DELPHI experiment are the first example of a drift
chamber that has the wire amplification in the limited streamer mode. Shielded be-
hind iron as they are, the increased dead time that is caused by the streamer regime
was easily tolerable. The large pulses made it possible to use a slow delay line
(0.6 μs/m) for a coordinate determination along the wire. Measuring the time differ-
ence the authors obtained an accuracy of better than 10−3 of the length. The delay
line is incorporated in the cathode, as depicted in Fig. 11.7. The drift field is defined
by copper strips in the plastic material of the body.

Of the drift chambers of the HELIOS experiment we discuss the small ones
immediately behind the target. Their critical requirements were accuracy and
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Fig. 11.6a,b A drift cell of the CDHS chambers. (a) sense wires (small circles) and field wires
(large circles) with their potentials in kV; some distances are also indicated in mm; (b) equipoten-
tial lines, delineating sensitive areas for one quarter of the drift cell, as indicated in (a)

Fig. 11.7 Cross section of a drift-chamber module of the DELPHI Muon Identifier; the delay line
is incorporated in the cathode
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Fig. 11.8 A drift cell of the DC1 chambers in the HELIOS experiment; dimensions in mm

double-track separation. The solution adopted involves a slow gas which in turn
needed small drift cells in the high-multiplicity, high-rate environment. We see the
drift cell in Fig. 11.8. It must provide a very homogeneous field because the gas is
not saturated; therefore in each drift cell the eight sense wires are surrounded by a
large number of field wires. In an attempt to reduce the influence of the drift-time
variations, some of the field wires were given such potentials that only a fraction
of the ionization along the track was collected on the sense wires. The whole stack
consists of six chambers with three different wire orientations. The performance
figures reveal that the outstanding measuring accuracy of 60 μm per wire, reached
with the prototype, worsened and became 120 μm in the real experiment where the
presence of many tracks deteriorated the critical field conditions.

The muon chambers of the L3 experiment are the result of a colossal effort
to measure the momenta of fast muons with an accuracy of at least δpT/p2

T =
4× 10−4 GeV/c−1, in cylindrical geometry. In the experiment, the radial space be-
tween 2.5 and 5.4 m was allocated to this task, inside a magnetic field of 0.5 T. The
principle of the solution is sketched in Fig. 11.9; one observes that for the optimal
measurement of momenta in the magnetic field, the chambers are concentrated at
the inner and outer edges, and in the middle of the radial space (cf. the discussion in
Sect. 8.2.6). Their local measuring accuracy is increased by sampling each track N
times, thus gaining a factor of 1

√
N over the accuracy of a single wire – provided,

the relative wire positions are sufficiently well known. For this purpose, the sense
wires have been pulled over optically flat edges and are supported in the middle in
a controlled fashion. We show in Fig. 11.10 the drift cell of the chamber type in the
middle; it has N = 24 sense wires, 0.9 cm apart and 5.5 m long. Under operating
conditions the Lorentz angle is 19◦.
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Fig. 11.9a,b Arrangement of
the muon chambers in the L3
experiment. (a) view along
the axis; (b) side view

In order to make full use of the local accuracy, the three chambers traversed by
a fast muon must be in well-known and constant relative positions. This has been
achieved to an accuracy of 30μm, or 10−5 of the size of the mechanical structure.
This combination of size and positioning accuracy was unprecedented at the time in
high-energy physics experiments.

The disk-shaped forward tracking chambers for the H1 experiment are in our
collection on account of their circular symmetry and their radial sense wires. But
they are also interesting because, in addition to measuring tracks, they serve for the
detection of single photons created by transition radiators immediately upstream.
For this double function the gas was chosen to contain a sizeable fraction of xenon
with its short absorption length for soft X-rays.

The three-dimensional schematic drawing of Fig. 11.11 makes the 48 wedge-
shaped drift cells visible. Each one has at its centre the radial plane of the eight
radial sense wires, which are interspersed with field wires, and on both sides the
cathode planes. So at the outer radius the drift space is larger than at the inner one
in the ratio of these radii; and in order to maintain a uniform drift field in the cell,
the cathode is divided into axial strips on such radially increasing potentials that
the electric field is everywhere the same and orthogonal to the sense-wire plane.
Suitable field degraders close the volume of every cell. The drift-time coordinate

Fig. 11.10 One drift cell of a
middle muon chamber of the
L3 experiment
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Fig. 11.11 Schematic blow-up of the radial-wire drift chamber of the H1 experiment

is in the azimuthal direction, thus appropriate for a measurement of the particle
momentum in the axial magnet. (The influence of the magnetic field on the drift
directions has been neglected here, cf. Sect. 11.3.2.) The radial track coordinate is
obtained by charge division on pairs of wires. Similar chambers had previously been
constructed for the CDF experiment at Fermilab.

11.4.3 Type 1 Chambers without Field-Shaping Electrodes

The drift field of a conventional drift chamber is established by conducting sur-
faces (field wires, metal strips etc.) at suitable potentials. But according to an idea
of Allison et al. [ALL 82a], the drift field can also be established by deposition
of electrostatic charge on the insulating surfaces that delimit the gas volume. They
showed that in a large flat plastic box one can get a very homogeneous field just with
one proportional wire in the middle and two small cathode strips along the parallel
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Fig. 11.12 A chamber without field-shaping electrodes

edges (Fig. 11.12). The deposition of charge is straightforward if the insulating sur-
faces are backed (on the outside) by grounded plates parallel to the surface. Looking
at Fig. 11.13a, the field lines are as indicated at the moment that HV is applied to
the sense wire. Any positive charge from the wire amplification will travel along the
field lines and will fall onto the insulator and stay there to subsequently change the
field configuration.

This process continues until there are no more field lines pointing at the insu-
lator, i.e. the ideal field configuration is reached (Fig. 11.13b). As long as there
is any charge amplification going on at the wire, the ideal field configuration will
automatically be reached. It should be noted that for a thin chamber, the charge
on the wire must finally be equal to the charge on the insulating surface. This im-
plies that the gas amplification factor, which is determined by the amount of charge
on the wire, cannot be altered without changing the drift field in the volume. The
problematic side of this method is in the stability of the field. Although the positive
charges are easily brought into place, they are not so easily removed following small
fluctuations – these may be due to local discharges, bursts of particles, deposits on
the wire, etc., and are probably unavoidable. Allison et al. consider insulators with
a non-zero conductivity; these would create a dynamic equilibrium, which would
become a function of the rate of charge deposition.

On the other hand the new principle makes it easy to construct very simple drift
chambers. Franz and Grupen [FRA 82] have described the properties of a flat, round
chamber (1.4 cm × 50 cm diam) with only one short (1.4 cm) wire in the centre.

Fig. 11.13a,b Field
configuration (a) during the
process of charge deposition;
(b) ideal field configuration
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Becker et al. [BEC 82] have reported measurements with long and thin (20 cm ×
1.5 cm) plastic tubes, which could be bent. They have also discussed other applica-
tions of the new method. Dörr et al. [DOE 85] analyzed the behaviour of a circular
chamber operating in the limited streamer-mode.

11.5 Large Cylindrical Drift Chambers of Type 2

Spanning a large cylindrical volume with wires parallel (or approximately parallel)
to the axis requires strong end plates, which hold the wires, carry the combined
pulling force, and keep them in accurate positions. Usually the end plates, together
with the outer and inner cylinder mantles, also form the envelope for the gas.
The wire feedthroughs that transmit the high voltage and the signals are essential
elements of the construction.

11.5.1 Coordinate Measurement along the Axis – Stereo Chambers

Where charge division and time-difference methods were found insufficient, the
idea of varying the wire directions throughout the volume has been widely used.
The equivalent of a stack of type 1 chambers with differing wire orientations is
a (type 2) ‘axial stereo chamber’. In a cylindrical chamber with many concentric
layers of drift cells, a stereo layer can be formed by rotating the end points on
one side of the wire that belong to this layer by the small ‘stereo angle’ α and
by keeping the end points fixed on the other side. The cylindrical surface of this
wire layer turns from a cylinder mantle into a hyperbolic surface. The azimuthal
wire position becomes a linear function and the radial wire position a quadratic
function of z to the lowest order of αz counting from the middle of the chamber. This
inhomogeneity distorts the electric field to some extent. The achievable precision
δ z is equal to the measurement accuracy drϕ achieved in the azimuthal direction
divided by the stereo angle. Hence there is interest in making α as large as the
increasing inhomogeneities permit. In practice, stereo angles are built to plus and
minus a few degrees, alternating with zero degrees in successive layers.

Obviously a z measurement can also be provided outside the cylindrical wire
chamber with a type 1 chamber. In some experiments special ‘z chambers’ have
been built for this purpose.

11.5.2 Five Representative Chambers
with (Approximately) Axial Wires

Table 11.2 shows five chambers selected in the spirit described at the beginning of
this chapter. In quoting performance figures we have indicated (see footnote 1 of the
table) whether they are from early or later stages of the development of the detector.



378 11 Existing Drift Chambers – An Overview

Ta
bl

e
11

.2
So

m
e

la
rg

e
cy

lin
dr

ic
al

dr
if

tc
ha

m
be

rs
of

ty
pe

2

N
am

e
of

ex
pe

ri
m

en
t

M
ar

k
II

O
PA

L
A

R
G

U
S

SL
D

C
D

F
N

am
e

of
ch

am
be

r
N

ew
C

D
C

Je
t-

ch
am

be
r

D
ri

ft
-c

ha
m

be
r

C
D

C
C

T
C

M
et

ho
d

of
in

te
rn

al
z-

m
ea

su
re

m
en

t
St

er
eo

C
ha

rg
e

di
vi

si
on

St
er

eo
C

ha
rg

e
di

vi
si

on
St

er
eo

R
ef

er
en

ce
[A

B
R

89
]

[F
IS

89
]

[A
L

B
89

]
[Y

O
U

86
]

[B
E

D
88

]
[O

PA
91

]
[S

L
D

85
]

[B
E

R
91

]

G
eo

m
et

ry

O
ut

er
/in

ne
r

ra
di

us
(c

m
)

15
2/

19
18

3/
25

17
2/

30
96

/2
4

13
2/

31
L

en
gt

h
(c

m
)

23
0

32
0–

40
0

20
0

18
0

32
1

N
o.

of
w

ir
es

36
93

6
30

52
8

37
76

0
36

50
4

N
o.

of
se

ns
e

w
ir

es
58

32
38

26
59

40
51

20
61

56
N

o.
of

se
ns

e
w

ir
es

pe
r

ce
ll

6
15

9
1

8
12

;6
Se

ns
e

w
ir

e
di

am
et

er
(μ

m
)

30
50

30
25

40
M

ax
.n

o.
of

m
ea

su
re

d
po

in
ts

pe
r

tr
ac

k
72

15
9

36
80

84
R

ad
ia

ld
is

ta
nc

e
be

tw
ee

n
se

ns
e

w
ir

es
(m

m
)

8.
3

10
18

5
7

M
ax

.d
ri

ft
di

st
an

ce
(c

m
)

3
3–

25
1

3
4

St
er

eo
an

gl
e

(◦
)

4
0

2–
5

3
3

R
ad

ia
lt

ilt
of

se
ns

e-
w

ir
e

pl
an

e
(◦

)
0

0
–

0
45



11.5 Large Cylindrical Drift Chambers of Type 2 379

Ta
bl

e
11

.2
(c

on
tin

ue
d)

G
as

an
d

fie
ld

s

G
as

(p
er

ce
nt

ag
e

co
nc

en
tr

at
io

n)
A

r(
89

)
A

r(
88

)
C

3
H

8
(9

7)
C

O
2
(9

2)
A

r(
49

.6
)

+
C

O
2
(1

0)
+

C
H

4
(1

0)
+

C
H

3
O

H
(3

)
+

i-
C

4
H

10
(8

)
+

C
2
H

6
(4

9.
6)

+
C

H
4
(1

)
+

i-
C

4
H

10
(2

)
+

H
2
O

(0
.2

)
+

C
2
H

5
O

H
(0

.8
)

G
as

pr
es

su
re

(b
ar

)
1

4
1

1
1

E
le

ct
ri

c
dr

if
tfi

el
d

(k
V

/c
m

)
0.

7
0.

9
1–

2
(7

0%
)

1.
0

1.
35

M
ag

ne
tic

fie
ld

(T
)

0.
47

0.
4

0.
8

0.
6

1.
5

D
ri

ft
ve

lo
ci

ty
(c

m
/μ

s)
5

0.
3

4–
5

0.
9

ω
τ

(a
pp

ro
x.

)
0.

4
0.

35
<

1
0.

05
1

Pe
rf

or
m

an
ce

(1
)

Po
in

t-
m

ea
su

ri
ng

ac
cu

ra
cy

σ r
ϕ

(m
m

)
0.

17
(c

)
0.

12
(b

)
0.

19
(c

)
0.

05
5

(b
)

0.
2

(c
)

0.
13

5
(c

)
C

ha
rg

e
di

vi
si

on
σ z

(m
m

)
–

30
–4

0
(b

)
–

9
(b

)
–

60
(c

)
D

ou
bl

e-
tr

ac
k

re
so

lu
tio

n:
Δ r

ϕ
(m

m
)

3.
8

(c
)

2.
5

(c
)

9
(a

)
1

(a
)

5
(c

)
A

cc
ur

ac
y

of
io

ni
za

tio
n

m
ea

su
re

m
en

t(
%

)
7.

2
(c

)
3.

5
(b

)
4.

5–
5.

5
(c

)
–

3.
8

(c
)

A
cc

ur
ac

y
of

m
om

en
tu

m
m

ea
su

re
m

en
t(

2)
0.

00
46

(c
)

0.
00

12
(b

)
0.

00
9

(c
)

0.
00

15
(a

)
0.

00
1

(c
)

(3
)

δ
p t

/
p2 t

(G
eV

/c
)−

1
0.

00
22

(c
)

0.
00

2
(c

)
(2

)

1.
T

he
pe

rf
or

m
an

ce
fig

ur
es

ar
e

ba
se

d
on

:
(a

)
ca

lc
ul

at
io

n
an

d
la

bo
ra

to
ry

te
st

s;
(b

)
pr

ot
ot

yp
e

an
d

te
st

be
am

m
ea

su
re

m
en

t;
(c

)
m

ea
su

re
m

en
ts

in
th

e
ru

nn
in

g
ex

pe
ri

m
en

t.
2.

H
ig

h
p t

,f
ul

lt
ra

ck
le

ng
th

,c
ha

m
be

r
al

on
e.

3.
U

si
ng

th
e

co
ns

tr
ai

nt
of

th
e

pr
im

ar
y

ve
rt

ex
.



380 11 Existing Drift Chambers – An Overview

It is not unusual that the prototype performed better than the full chamber eventually
did in the experiment.

When the momentum-measurement accuracy actually achieved in an experiment
is compared to that expected from the point-measuring accuracy, the number of
points, and the magnetic field strength (Sect. 8.5.1), it is often not as good as an-
ticipated. The overall mechanical accuracy, local and global field distortions, and
imperfect calibrations all make their contribution to the momentum-measuring ac-
curacy, which sometimes improves only slowly as the apparatus is better and better
understood.

11.5.3 Drift Cells

The minimal wire configuration needed to establish the drift and amplification field
around the proportional wire (which is at a positive potential) is a group of field
wires at a negative potential around it. For a drift chamber of type 2, this elementary
‘cell’ is repeated to fill the whole volume. Figure 11.14 shows, as an example, drift
cells of the ARGUS chamber; the full chamber consists of 5940 cells of this type.
Advantages of this arrangement are the high degree of homogeneity over the full
volume, the fine granularity, which allows the use of single-hit electronics, and the
full track ionization that is employed. On the other hand, the local field around the
wire in one cell is not very homogeneous and thus requires a very careful calibration
of the critical relation between drift time and wire–track distance. In Fig. 11.15 we
see the electron drift paths calculated for such a cell type [HAR 84]. They are in the
form of spirals, created by the B field parallel to the wires. The contours of equal
arrival times are circles near the sense wire, but they are shaped by the field-wire
geometry far from the sense wire. This means in practice that the time–distance
relation for tracks is a function of the orientation of the track with respect to the
drift cell.

The design of the OPAL drift cell goes in the opposite direction (Fig. 11.16).
The basic unit is a wedge-shaped sector that fills 15◦ of azimuth over the entire
radial space so that the chamber consists of 24 of them. Each sector contains one
radial plane of sense wires which are interspersed by field wires. The sense wires
are actually staggered to resolve the left–right ambiguity. Each sector is limited and

Fig. 11.14 Drift cells of the
ARGUS chamber. The sense
wire is, typically, at 2.9 kV
and the cathode wires are
grounded
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Fig. 11.15 Drift paths and
lines of equal arrival times for
a drift cell of the ARGUS
chamber. The time lines are
15 ns apart

separated from its two neighbours by two common radial planes of cathode wires at
such radially increasing potentials as to create a homogeneous drift field orthogonal
to the central sense/field-wire plane. The inner surface of the enclosing cylinder
carries suitable field degraders. This geometry has also been called ‘jet chamber’
geometry. In this design the homogeneity is constructed into each sector, which is
relatively large. Close tracks are resolved electronically by using short pulses and
digital pulse-shape analysis. The dilemma of the Lorentz angle is diminished by a
high gas pressure and a low magnetic field.

The cell design of the new MARK II chamber follows a similar line: radial
sense/field-wire planes with radial cathode planes in between, but organized in 132
layers, 7.5 cm in radius. This is done in order to be able to create stereo angles in
consecutive layers. There are 972 cells in the chamber. Figure 11.17 shows a cell
with its electron drift trajectories.

Fig. 11.16 A section of the OPAL drift cell with electron drift lines. Upper plane: cathode wires;
lower plane: sense/field wires
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Fig. 11.17 Mark II drift cell
with electron trajectories

The small cell of the SLD drift chamber (Fig. 11.18) is designed to create a better
separation between the amplification region and the drift region by displacing the
field wires from their position between the sense wires to a position surrounding
them. This is done to create a uniform drift region for the slow gas employed. Here
the good diffusion properties of carbon dioxide have been combined with its low
drift velocity at high electric fields. Thus the Lorentz angle is kept near 6◦ at the
field of 0.6 T. On the other hand, this imposes severe requirements on the electric
field uniformity, since the drift velocity under these conditions is proportional to the
electric field (‘unsaturated gas’). There are 640 drift cells in the detector. A very
favourable point-measuring accuracy of 55 μm was obtained with the prototype.
This requires that the wire displacements caused by mechanical inaccuracy, gravity,
and electrostatic forces as well as by the stereo arrangement are fully controlled to
this precision.

Fig. 11.18 SLD drift cell with
electron drift lines
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Fig. 11.19 A drift cell of the CDF central tracking chamber, with electron drift lines

The drift cells of the central tracking chamber of the CDF detector (Fig. 11.19)
are inclined by 45◦ with respect to the radial direction in order to take the Lorentz
angle at the employed magnetic field of 1.5 T into account. This solution also offers
advantages for triggering and for pattern recognition. The arrangement of the drift
cells, of which there are 660, in the end plate can be seen in Fig. 11.20. The cells
are divided radially into nine superlayers which alternate between wires in the axial
direction and wires at a ±3◦ stereo angle. Tilted drift cells are also employed for
the drift chambers of the H1 and ZEUS experiments at the HERA e-p collider.

Fig. 11.20 The end plate of
the CDF central tracking
chamber with its drift cells,
which are inclined with
respect to the radial direction
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11.5.4 The UA1 Central Drift Chamber

The detector fills a cylinder, 6 m long and 2.2 m in diameter, which contains the
collider-beam pipe on its axis. Equally horizontal, but at right angles to the beam, is
the magnetic field of 0.7 T (see Fig. 11.21). Along its length, the cylinder is divided
into three cylindrical sections, each 2 m long: the central section and the two forward
ones. The wires are all parallel to the magnetic field and organized in planes accord-
ing to the following scheme: the anode planes have alternating sense (35 μm diam)
and field (100 μm diam) wires every 5 mm; the cathode planes with 120−μm wires,
also every 5 mm, are parallel to the anode planes, leaving drift spaces of 18 cm be-
tween them. A peculiarity of the UA1 detector is the orientation of these planes –
they are vertical in the central cylinder part and horizontal in the forward parts. This
arrangement is a consequence of the horizontal magnetic field; the solution opti-
mizes the momentum-measuring accuracy, the track curvature being measured by
the drift time. The charge-division technique is used for the coordinate along the
wire direction. Filled with a gas mixture of 40% Ar and 60% C4H10 at ambient
pressure, the drifting electrons reach a velocity of 5.3 cm/μs under a Lorentz an-
gle of 23◦ in their drift field of 1500 V/cm. The total number of wires is 22 800, of
which 6110 are sense wires. A stiff vertical track is measured on 100 points and a
stiff track near the forward directions on up to 180 points.

Fig. 11.21 Geometry of the
UA1 central detector
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Performance figures were measured in the experiment as follows [NOR 90]: The
average point-measuring accuracy in the direction of the drift amounted to 350 μm.
The relative accuracy of momentum measurement, which depends very much on
the track orientation, was typically δ p/p = (0.01 GeV/c−1)p for isolated tracks in
a favourable direction (obviously, the curvature of tracks that emanate from the in-
teraction region under a polar angle of 90◦ and parallel to the magnetic field cannot
be measured.) The electronic two-track resolution limit on a wire was about 5 mm.
The coordinate measurement accuracy along the wires was 3.5% r.m.s. of the wire
length after the gain reduction by a factor of three that was necessary when the de-
tector had to work in the high-luminosity environment; before this change, 2% had
been reached. These numbers illustrate the conflicting requirements of having the
smallest possible space charge in the drift region (small wire amplification) and the
best possible charge-division accuracy (large amplification) at the same time.

Ionization measurements of tracks in this complex detector were limited in accu-
racy and were not employed for particle identification.

In Fig. 11.22 we reproduce an event as reconstructed by the computer; the high
number of measured points along each track make a clear picture even for the com-
plicated events created in high-energy hadron collisions – in fact this picture is
famous because it contains the first Z0 particle ever observed. The two arrows mark
the electron and the positron into which it decays.

11.5.5 The ATLAS Muon Drift Chambers (MDT)

The ATLAS experiment at the Large Hadron Collider (LHC) will investigate
pp-collisions with a total energy of 14 TeV; muons with transverse momenta up
to 1 TeV/c will be detected and measured in the muon spectrometer [ATL 97]. The
purpose of the muon drift chambers is to determine the momenta of the muons as
accurately as possible.

The ATLAS magnet produces a toroidal field in air (field lines going around
the beam) which offers a high bending power at much reduced Coulomb scattering

Fig. 11.22 Computer-reconstructed event in the UA1 central detector – the first Z0 particle ever
observed is seen to decay into an e+ and an e−. Only one in two wire signals is displayed
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Fig. 11.23 ATLAS muon drift chamber, consisting of a pair of threefold tube layers, separated by
a spacer frame

because there is no iron yoke. The chambers consist of simple aluminium drift tubes
with a diameter of 3 cm, carrying a central wire. (The theoretical work as well as the
practical measurements that were done in order to find the best operating conditions
for these tubes were published in a series of papers in 2000 [RIE 00]). They are
mounted to form chambers as shown in Fig. 11.23; almost all chambers consist of
a pair of threefold plane layers of parallel tubes, the triple layers being separated
by a spacer. This is the basic unit, mostly 1 to 2 m wide and up to 6 m long in the
direction of the tubes. There are 1194 of them, covering a total surface of 5500 m2.

As the coordinate measurement of the drift tubes is perpendicular to the wires, the
chambers are oriented with the wires essentially following the magnetic field lines.
In the ‘barrel’, the chambers are arranged in three cylindrical concentric layers so
that a stiff particle track from the interaction point is measured in all three layers for
optimum momentum resolution (see Fig. 11.24). The vertical detectors in the ‘end-
caps’ measure tracks in the more forward or backward directions in a similar way.
It should be noted that the muon drift chambers can only determine one coordinate,
the one that is useful for the momentum measurement. The azimuthal coordinate of
a track is measured in other detectors of the spectrometer. The overall dimensions
are characterized by a cylindrical volume into which the muon spectrometer can be
fitted; it is 22 m in diameter and 45 m long. The barrel chambers occupy radial space
between 4.5 and 11 m, and the longitudinal space for the vertical end plates extends
from 7 to 11 m on either side of the interaction point. At the time of writing the
second edition of this book, the spectrometer is being assembled to start operation
in 2008.

The momentum measuring accuracy in the given magnetic field depends essen-
tially on three factors: (1) the track measuring accuracy of the individual tube,
(2) the accuracy with which the relative positions of the tubes are known, and
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Fig. 11.24 Cross-sectional view of the barrel part of the ATLAS muon spectrometer. The cross
sections of the eight coils of the toroid magnet are visible as white circles; the chambers are located
inside and between them. The diameter of the barrel is approx. 22 m

(3) the multiple scattering in the chambers and the structural material traversed by
the particle.

1. The accuracy achieved for an individual drift tube in the absence of a magnetic
field is depicted in Fig. 11.25 as a function of the distance between the track and
the wire. The working gas mixture for these measurements was 91%Ar + 4%N2 +
5%CH4 at 3 bar abs., which allows an r.m.s. measuring accuracy of approx. 75 μm to
be reached for drift distances above 3 mm. For smaller drift distances the accuracy
quickly becomes worse as the primary ionization fluctuation dominates. In view
of the problems of ageing in the high flux regime (cf. Sect. 12.6.4), it was later
decided to go to 93%Ar + 7%CO2 at 3 bar abs. The unfavourable dependence of
drift velocity on the E-field of this gas had to be accepted. The resolution achieved
with the new mixture is shown in Fig. 7.19.

2. The geometrical integrity of each chamber is guaranteed by glueing the tubes
onto the frames. During the experiment, a laser calibration system will follow
the internal elastic deformations caused by changes of temperature or stress. For
the measurement of momentum it is important to know the relative positions of
the three chambers that together determine the sagitta of the particle track. For
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Fig. 11.25 Measuring
accuracy of an individual drift
tube, without a magnetic
field. Full circles:
measurements; open circles:
simulation [RIE 00]
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this purpose, the chambers of this ‘tower’ are interconnected by laser rays seen
by position-calibrated detectors on the chambers.

3. The mechanical structures for the support of the magnet, the chambers, and
all the other detectors of the ATLAS experiment are almost all made of aluminium.
They represent a mass of material which causes a lot of Coulomb scattering in ad-
dition to that of the chambers proper. It may be quite different from one track to
another; on average it causes relative transverse momentum measurement errors
δ pT /pT typically between 2 and 3%. The aluminium of the chambers themselves
contributes approx. 1%.

The overall momentum-measuring accuracy of the muon spectrometer is calcu-
lated to be roughly δ pT /pT = 0.1 at pT = 1 TeV/c, dominated by (1) and (2), and
0.03 at pT = 10 GeV/c, dominated by (3).

11.5.6 A Large TPC System for High Track Densities

The NA49 experiment at the CERN SPS accelerator is dedicated to the study of
hadron production on fixed targets in proton-proton, proton-nucleus, and nucleus-
nucleus collisions [AFA 99]. A system of 4 large TPCs with a total sensitive volume
of 33 m3 is the main instrument for tracking and dE/dx measurement. The incom-
ing beam passes between them, compare Fig. 11.26. Central lead-lead collisions at
the beam momentum of 158 GeV/c per nucleon can produce more than a thousand
tracks in one event.

Of the four TPC modules, the two smaller ones are operated inside strong and
not very homogeneous vertical magnetic fields, the two larger ones outside. The
drift is vertical, the sensitive wire chamber end plates horizontal. The wire grids are
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Fig. 11.26 Top view of the four TPCs; the two ‘vertex chambers’ inside the magnetic field are on
the left, the two ‘main chambers’ to both sides of the beam outside the magnetic field are on the
right. A central Pb + Pb event is depicted in a slice only 7 mm high around the beam plane, in order
to be able to distinguish tracks in the projection

designed as in the ALEPH TPC but have a reduced distance between pads and sense
wires. Their total area amounts to 30 m2. Signals are read out only from the cathode
pads of which there are 182 000. A maximum of 234 pad rows is available for the
measurement of fully recorded tracks, but the actual number of signal clusters lies
approximately between 20 and 160, depending on track overlap and kinematics in
the given acceptance region. The authors estimate that an over-all position precision
of about ±0.20 mm has been achieved for isolated tracks, varying with the drift
length between ±0.15 and ±0.28 mm.

The separation of neighbouring tracks is a major challenge in this experiment.
The diffusion properties of the gas and the other detector parameters have been
designed with the aim to reach a charge distribution within typically 5 mm FWHM.
The authors show that track pairs with average distances above 1.6 cm are fully
detected, those with distances of 1.0 cm are detected with 50% efficiency. Further
improvements seem to be in reach. It is remarkable that the TPC technique can be
extended to record tracks in such high particle densities.

This was made possible by an increased density of cathode pads and the associ-
ated electronic channels. The entire front-end electronics up to the digital outputs is
mounted on the TPC readout chambers, the pad widths being not more than 3.5 or
5.5 mm.

The high particle density is a challenging environment also for particle identifi-
cation using dE/dx measurements. It is difficult to control the pulse height variation
with drift time which is partly caused by the baseline shift of the electronic signals,
partly by the widening of the measured charge clusters at the required threshold,
but only to a smaller degree by electron attachment. It is also not easy to correct for
electronic cross-talk at these high particle densities. Despite of these severe condi-
tions, the authors are able to report an r.m.s. resolution for the dE/dx measurement
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of σI = 38%/
√

Nc where the number Nc of signal clusters lies between 20 and 160.
The method of charge estimation applied is the one of the truncated mean at the
50% level. The relativistic plateau is IR = 56% above minimum ionization.

Using the ratio σI/IR as a measure for the ability of particle identification one
can say that the NA49 TPC system reaches a similar level of identification ability as
the detectors listed in Tables 10.3 and 10.4, once the losses of signal clusters from
track overlap and acceptance limitation are taken into account.

11.6 Small Cylindrical Drift Chambers of Type 2
for Colliders (Vertex Chambers)

Vertex detectors are needed for the measurement of the (primary) interaction vertex
or any secondary vertices that may occur in an event from the decay of short-lived
particles. The charm, bottom and τ particles have lifetimes of the order of 10−13 to
10−12 s, so the tracks from the secondary vertices will miss the primary vertex by
correspondingly small distances, which are of the order of 30 to 300 μm. Ideally,
vertex chambers should have even better measurement accuracies.

This is the field where the fine-grained solid-state particle detectors with their su-
perb spatial resolution are often a better choice than gas drift chambers. These have
in their favour the simplicity of a proven technique and a somewhat better resis-
tance against high-radiation background. Also they are more easily extended over
large sensitive areas. Being closer to the interaction point they can often be built
smaller and with shorter wires than the large axial chambers, so that the wire posi-
tion can be extremely well defined. This is a prerequisite for the high measurement
accuracy achieved in the vertex chambers. When measuring the position of a vertex
inside the vacuum tube, multiple scattering in the wall of the tube is often a limiting
factor, which depends on the momentum of the extrapolated particle as well as on
the tube radius and the thickness of the wall.

In order to reach the best possible point-measuring accuracy and double-track
resolution, the sense wires have to be as close as possible to each other (cf. the
discussion in Sect. 11.8). The limit imposed by electrostatic stability depends on
the wire length and the detailed electrostatic pattern, and it becomes more severe at
higher gas pressures because of the corresponding higher voltages.

To find the correct gas, one has to balance the consequences of a slow ‘cool’
gas (see Sects. 2.2.4, 12.1) – slower electronics, high drift field with low diffu-
sion, sensitivity to field inhomogeneity through unsaturated drift velocity – with
the consequences of a fast ‘hot’ gas – faster electronics, lower sensitivity to field,
temperature and pressure variations.

These questions have been studied in detail for the more recent vertex detec-
tors. The chambers listed in Table 11.3 are again intended to represent the different
choices in the field. They are all axial drift chambers of type 2. The ones that reach
the highest precision are operated with slow cool gas at an elevated pressure. Hayes
has compared vertex drift chambers for the LEP and SLC detectors [HAY 88]. The
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proceeding of a workshop dedicated mostly to advanced vertex detectors [VIL 86]
offers some more material that describes the state of the art in 1986. A short review
on straw chambers was given by Toki [TOK 90].

Among the more recent vertex detectors we find the drift chambers with the best
measuring accuracy that are integrated into particle experiments. Higher accuracy
has only been achieved with more specialized devices. These will be briefly dis-
cussed in Sect. 11.8.

11.6.1 Six Representative Chambers

The JDV of the UA2 experiment had to work in severe background conditions at the
p̄p collider. The drift cell, shown in Fig. 11.27, has a geometry similar to that of the
OPAL chamber; it operates in a fast gas at atmospheric pressure, and at the saturated
drift velocity. The point-measuring accuracy achieved in the test beam (150 μm)
deteriorated a lot (300 μm) in the large-multiplicity events of the real experiment.

The vertex detector of the MARK-J experiment is built according to the principle
of the ‘time expansion chamber’, or ‘TEC’. Introduced by Walenta [WAL 79], it is
characterized by a wire amplification region strictly separated from the drift region
by a dense wire grid or wire mesh. The drift cell of the MARK-J TEC is shown in
Fig. 11.28 and represents one twelfth of the entire chamber. One recognizes the two
wedge-shaped drift spaces on either side of the 4 mm wide amplification region; they
are not symmetrical because the sense/field wire planes are inclined alternatively by
± 4◦ in the service of pattern recognition. The gas is a slow and cool mixture of
80% CO2 and 20% i-C4H10. The sense wires are read out by 100 MHz analogue-
to-digital converters (flash-ADCs). An average point-measuring accuracy of 40 μm
was determined with Bhabha events.

Fig. 11.27 Drift cell of the
UA2 JVD chamber
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Fig. 11.28 Drift cell of the TEC of the MARK J experiment

The MARK II vertex chamber was designed for the SLAC Linear Collider with
its small beam pipe, which has a radius of 2.5 cm. The inner wall of the chamber
and the beam pipe represent a total of 0.6% of a radiation length, thus contributing
only 45 μm GeV/c to the Coulomb scattering limit Sc discussed in Sect. 8.4.2.

The wires run parallel to the axis, and they are organized in cells that each span
the full radial range between 5 and 17 cm (see Fig. 11.29). In the middle of each cell
is the sense/field-wire plane, inclined by an azimuthal tilt angle of 15◦; it contains 41
field wires, spaced out by 2.9 mm, and 40 sense wires between them. Two planes of
grid wires, 1.8 mm on either side, separate the amplification region from the drift re-
gion and provide a certain amount of focussing for the electron drift paths, similar to
what happens in the ‘TEC’. The cathode planes with 59 wires, spaced out by 2 mm,
bisect the angle between the sense/field-wire planes of two adjacent cells. Each drift
cell is thus limited by the two cathode planes at radially increasing potentials and
additional potential wires at the cylindrical surfaces. They complete the field cage
which provides a uniform field despite the wedge of drift space it encloses.

The OPAL vertex chamber is constructed for LEP whose beam pipe is much
larger than the one at the SLC. With its radius of 7.8 cm and its thickness of 0.86%
radiation lengths the OPAL pipe contributes a Coulomb scattering limit Sc = 110
GeV/c to the impact-parameter resolution.
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Fig. 11.29 Drift cell of the
VCDV of the MARK II
experiment

The wire pattern is shown in Fig. 11.30. The chamber is 100 cm long. It has one
axial and one stereo layer at 20◦. The axial layer between radii of 9.4 and 17.1 cm
is of the ‘jet chamber’ type and has 36 radial planes of sense/field wires, each con-
taining 12 sense wires spaced out by 5 mm, and the field wires between them. The
left–right ambiguity, which does not occur when the sense-wire plane is tilted with

Fig. 11.30 Wire pattern of the
OPAL vertex chamber
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Fig. 11.31 Measured
prototype vertex chamber
resolutions σ as a function of
the drift distance x after
[HAY 86]. Triangles: OPAL;
circles: MARK II. Open
symbols: slow gas (CO2
(80%) + i-C4H10(20%) at 2.5
bar for OPAL, CO2 (92%) +
i-C4H10 (8%) at 3 bar for
MARK II); full symbols: fast
gas Ar (50%) + C2H4 (50%)
at 3 bar for both chambers

respect to the radial direction, is resolved by staggering alternative sense wires by
± 41μm which increases to ± 80μm in the middle of the wires, owing to their
electrostatic forces. The 10◦ in azimuth between two neighbouring sense/field-wire
planes are bisected by the radial-wire-cathode planes, so that the maximal drift dis-
tance varies with radius from 9 to 15 mm. There is a double layer of potential wires
to close the field cage of each cell. This produces a field that is uniform and at right
angles to the sense/field-wire plane by grading the cathode voltages appropriately.

The stereo layer occupies the radial space between 18.2 and 22.6 cm; it is orga-
nized in the same fashion, but there are only half as many sense wires in this layer.
The maximal drift distances are now between 1.6 and 1.9 cm.

Each of the 648 sense wires is read out at both ends and is timed with a
constant-fraction discriminator and a time-to-digital converter (TDC). Thus, there
is a coordinate measurement along the wire direction from the time difference, in
addition to the azimuthal coordinate determined from the average of the two times.

The OPAL vertex detector is operated with the slow mixture CO2 (92%) +
i-C4H10 (8%) at 2.5 bar. The space resolution achieved with the drift-time mea-
surement is depicted in Fig. 11.31 as as function of the drift distance, both for the
OPAL and the MARK II vertex detector prototypes. The resolution has reached the
remarkable range between 20 and 40 μm for drift distances up to 3 cm. With fast gas
and the same electronics, the resolutions were two or three times worse [HAY 88].

Fig. 11.32 One quarter of the
end plate of the MAC straw
vertex chamber (for
dimensions, consult
Table 11.3)
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Fig. 11.33 Drift cells of the
ALEPH Inner Track Chamber

The drift chambers of the last two examples in our list are again constructed
from cells that are built around the individual sense wires. The vertex chamber of
the MAC detector consists of many thin tubes of aluminized Mylar foil with the
proportional wire in the centre. These ‘straws’ provide exact cylindrical symmetry
and a high degree of electrical shielding between sense wires. Their inner diameter
is 6.9 mm, and the wall thickness 50 μm. In Fig. 11.32 we see the layout of the
vertex chamber end plate.

The cylindrical geometry produces a drift field that increases with the inverse
distance from the wire. The drift velocity therefore also changes, depending on the
gas used. In Table 11.3 we have indicated ranges for the field and the velocity that
are valid in the outer 70% of the drift region. In a similar design for the MARK III
experiment [ADL 89], the gas mixture was argon–ethane with a more uniform, and
higher, velocity; the achieved point-measuring accuracy was comparable. Toki has
recently reviewed straw chambers [TOK 90].

The purpose of the ALEPH-ITC is the production of an early trigger signal as
well as precise tracking (a solid-state microstrip detector is mounted in addition).
The drift cell is a group of six field wires around each proportional wire, in a flat
hexagonal arrangement, which is depicted in Fig. 11.33. Each hexagon is character-
ized by two shape parameters, the diameters in the radial and in the circumferential
directions; both vary with the wire layer. A time-difference measurement is the basis
for a determination of the axial coordinate. It takes 0.5 μs for a trigger decision in
r−φ and 2.5 μs in r−ϕ − z.

11.7 Drift Chambers of Type 3

An ionization track created in the sensitive gas volume of a type 3 chamber drifts
to one of the end faces that delimit the volume. It is there that the amplification and
signal generation take place. Large chambers have drift lengths of one or several
metres. If a magnetic field is present in a TPC, it is parallel to the drift field, and
in this orientation it can greatly improve the transverse diffusion of the travelling
electrons, on account of the magnetic anisotropy of diffusion; see Sect. 2.2.6.

With the length of the drift path we have a correspondingly high drift time – often
many tens of microseconds for electrons and several seconds for ions. This makes
long type 3 chambers unsuited for measuring events at very high rates because the
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space charge from previous events in the drift space will distort the tracks. Ion shut-
ters (‘gating grids’ – see Chap. 9) are suitable tools for reducing the amount of ion
current that flows back into the drift volume from the amplification region.

The length of the drift path also sets severe requirements on the uniformity of the
electric and magnetic fields: a non-uniformity of one per cent may cause transverse
displacements of the order of one per cent of the drift length.

Finally we mention gas purity. Electrons may be attached to gas components that
are present even in extremely low concentrations, the result being a signal loss that
increases with the drift path. We have described electron attachment in Sect. 2.2.7.

Still a TPC can be a very powerful universal track detector. If all the above-
mentioned problems have been overcome, one profits from its advantages: with its
wires strung on the inner surface of the end-plates rather than through the volume
the construction can be modular and technically very convenient. For every track
segment one achieves an intrinsically three-dimensional coordinate determination –
two coordinates being given by the position in the end plate of the pick-up electrodes
that collect the segment, the third being measured through the drift time.

Furthermore, with a TPC one can totally avoid the dilemma of the Lorentz an-
gle: if one puts B and E parallel in the drift volume, there is no shift of the drift
direction, and the magnetic field may be increased as far as technically feasible, the
gas pressure can be kept low, and the diffusion may be dramatically reduced; cf. the
discussion in Chap. 12.

11.7.1 Double-Track Resolution in TPCs

The measurement of a track produces a dead region around this track where the
chamber is insensitive to the measurement of other tracks. In a TPC with cathode
pads, this dead region is a tube around the track, whereas in axial wire chambers and
in TPCs with wire measurement it is a flat region that extends along the full length
of the wire.

Concerning track measurements with pads, overlap occurs on the pad when it is
still occupied with the pulse of a first track at a time when the pulse of a second
track begins. The pulse length T is given by the intrinsic electronic pulse length te
plus the drift-time difference td of the electrons from one track that reach the pad
at different times, because of a track inclination θ and the size h of the pad. With
reference to Fig. 11.34 we have an overlap region Δz in the drift direction, equal to

Δz = ute +utd = ute +h/ tanθ , (11.1)

where u is the drift velocity and θ the angle between the track and the normal to the
pad (typically the polar angle). In Table 11.4 double-track resolutions are quoted for
two polar angles.

In the azimuthal direction, two tracks will have to be 2 or 3 pad widths apart in
order to be separable; a practical average may be 2.5 pad widths.
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Fig. 11.34 Two inclined
tracks; the first electrons from
track 1 arrive on the pad at
the same time as the last
electrons from track 2

11.7.2 Five Representative TPCs

There are four large cylindrical TPCs that have been built around the interaction
points of e+e− colliders (PEP-4, TOPAZ, ALEPH, DELPHI); see Table 11.4. They
are all very similar because their construction followed closely the principles estab-
lished by the pioneers in this field, the designers of the PEP-4 TPC. These chambers
are cylinders around the colliding beams; the drift direction is parallel to the mag-
netic field and to the direction of the incoming particles. The drift volume is divided
in the middle by the high-voltage membrane which is set at a negative potential so
that the circular end plates with their detection electrodes can be kept at earth po-
tential (Fig. 11.35). The disposition of the various layers of electrodes in the end
plates is seen in Fig. 11.36a, and Fig. 11.36b shows the arrangement of the pads in
the cathode plane in the example of the ALEPH TPC. The inner and outer cylin-
der mantles that delimit the gas volume also carry the high-voltage electrode rings,
which shape the axial, homogeneous electric drift field.

The four large TPCs differ among each other in two respects: the PEP-4 and
TOPAZ TPCs are constructed to work at higher gas pressure and with straight pad
rows; the ALEPH and DELPHI TPCs have ambient pressure and circular pad rows.
The gas pressure is an important choice for any drift chamber (see the discussion in
Sect. 12.5), but for TPCs one must consider in addition the magnetic anisotropy of
diffusion – the transverse width of the diffusion cloud increases with the pressure.
The circular pad rows in the two TPCs at CERN are an improvement over the (ear-
lier) straight rows, since for stiff radial tracks they do not cause the measurement
error that was called the ‘angular pad effect’ in Sect. 7.2.

Whereas the width of the pad determines the number of electronic channels and
hence the cost of the project, the length of the pads (extent in the radial direction)
is chosen as a balance between the largest possible signal and a loss of accuracy
of lower-momentum tracks, owing to the angular pad effect (cf. Sect. 7.3.3). Also,
long pads deteriorate the two-track separation for steep tracks (Sect. 11.7.1). The
long pads in the ALEPH TPC reflect a choice in favour of a larger signal.

The problem of track overlap may be quantified as a loss of tracks rather than
points specifying the minimum opening angle Δα measured between two tracks at
the vertex, below which losses are observed. The minimum opening angle is smaller
for pairs with opposite curvature because the magnetic field bends them apart. Such
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Fig. 11.35 Geometry of the
Berkeley TPC and the three
TPCs derived from it. F =
field cage, P = proportional
wire chambers, E = electric
field

Fig. 11.36a,b Disposition of the electrodes on the end plate of the ALEPH TPC (distances in mm).
(a) Wire grids; (b) pad plane
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loss studies have been performed for the PEP-4 and the ALEPH TPCs and the cor-
responding values of Δα are also listed in Table 11.4. They represent averages over
the full solid angle.

In Table 11.4, besides the four large TPCs mentioned above, we have included
one other TPC built around a collider, the CDF vertex TPC system, which consists
of eight double chambers near the beam pipe and predominantly serves the purpose
of a vertex detector.

11.7.3 A Type 3 Chamber with a Radial Drift Field

The central tracking device for the ASTERIX experiment at CERN [AHM 90] is
a cylindrical volume around a gas target. The inner cylinder mantle is a thin alu-
minized foil with a diameter of 16 cm, the outer mantle has a diameter of 30 cm and
carries the detection electrodes: 90 axial sense wires and 270 field wires backed by
helical cathode strips. The inner mantle is at a potential of –10 kV; the circular end
faces (1 m apart) incorporate field degraders down to the earth potential of the outer
cylinder.

With the radial drift field at right angles to the axial magnetic field, which
amounts to 0.8 T, the drift paths for the electrons take on the curved forms visible
in Fig. 11.37; this gave rise to the name ‘spiral projection chamber’ for this device
[GAS 81]. Filled with a gas mixture of argon (50%) and ethane (50%), the chamber
was primarily used for the detection of X-rays in the keV range, but also for the
measurement of particle tracks. A stiff track crosses the drift cells that belong to 5
different sense wires, thus allowing 5 track coordinates to be measured. The number
of measured points depends very much on the track curvature.

For the reconstruction of the primary vertex point, an accuracy was achieved
which amounted to σ = 0.4 mm transverse to the beam and σ = 2.1 mm in the
longitudinal direction.

Fig. 11.37 Drift paths of the ASTERIX drift chamber
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11.7.4 A TPC for Heavy-Ion Experiments

The interaction of a heavy ion of several hundred GeV per nucleon with a fixed
target often produces hundreds of secondary particles. TPCs have been built to study
such high-multiplicity events downstream of a fixed target, and we discuss here the
Brookhaven chamber as an example [ETK 89]. Like the first TPC, it operates in a
magnetic field (0.5 T) parallel to the electric drift field (330 V/cm). However, the
electronic signals are derived not from cathode pads but from short (≈1 cm) anode
wires, which are spaced out by 2.54 mm along several parallel straight rows.

There are three thin-walled TPC modules, one behind the other, which are
separate containers of the gas, a mixture of argon (79%), isobutane (16%) and
dimethoxymethane (5%) at ambient pressure. In each module the sensitive surface
is horizontal, and the vertical y coordinate is measured using the drift time. The
x coordinate along each anode row is measured by the wire addresses and a suit-
able interpolation, but only the fact of a hit above some discriminator threshold is
recorded. There are twelve anode rows per module, one every 3.8 cm along the z
direction of the incoming beam, and altogether 3072 channels per module.

For the high-multiplicity events a good two-particle separation capability had to
be the essential goal of the construction and of the pattern-recognition programme.
The measured result was that two tracks could be separated in 50% of the cases if
they lay inside the same area that measured 5× 5 mm2 in x–y. The effective r.m.s.
point-measuring accuracy amounted to σx = 0.9 mm and σy = 0.75 mm for sec-
ondary tracks from Si interaction, whereas isolated beam tracks could be measured
much better. The drift velocity was 2.3 cm/μs.

The beam projectiles are fully ionized, and since the gas ionization that they
create is proportional to the square of their electric charge, there is a beam-rate
limitation in the TPC owing to the build-up of primary positive charge. The authors
observed that an intensity of 2× 104 oxygen nuclei per AGS spill of 1 s distorted
the tracks to the extent that their apparent sagitta was 0.5 mm in y− z.

In Fig. 11.38 we see the x–y projection of an event with 77 tracks pointing to
the vertex. Whereas it must be very difficult to measure the track reconstruction
efficiency, it is impressive to what extent the drift-chamber technique is capable of
reconstructing such complex events.

11.7.5 A Type 3 Chamber as External Particle Identifier

A drift chamber specialized in particle identification, ISIS2, was built by Allison
et al. [ALL 84] as part of the European Hybrid Spectrometer. Located behind a
fixed target at the SPS machine at CERN, this spectrometer contained two mag-
nets and numerous chambers for the measurement of particle tracks and momenta.
The purpose of ISIS2 was to precisely record the ionization of the particle tracks,
whereas their coordinates would only have to be measured with moderate accuracy.
A schematic diagram of this huge and almost empty box is seen in Fig. 11.39. The
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Fig. 11.38 Projection along the beam of a heavy-ion event (silicon beam on gold target) recon-
structed in the Brookhaven TPC [ETK 89]

Fig. 11.39 Geometry of the ISIS2 chamber
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useful volume is 4 m high, 2 m wide and 5.12 m long; it is divided into two drift
spaces by a single horizontal wire plane of alternate anodes and cathodes at half
the chamber height. The particles are supposed to enter the chamber through the
front window, which is part of the field cage that shapes the vertical electric field of
500 V/cm. There is no magnetic field. The ionization electrons from each track drift
in the uniform field and are amplified on 640 proportional wires connected in pairs
to 320 channels of multihit electronics. The chamber is filled with a gas mixture of
80% Ar and 20% CO2 at ambient pressure. The performance of this type 3 chamber
was characterized in Chap. 9 in the context of particle identification.

11.7.6 A TPC for Muon-Decay Measurements

In a search for muon–electron conversion, the TRIUMF group employed a TPC
which was to measure and identify low-momentum electrons and positrons in the
region of 100 MeV/c [BRY 83, HAR 84]. The apparatus surrounded a target foil
in which muons were degraded and stopped. The TPC was shaped as a hexagonal
cylinder as shown in Fig. 11.40, approximately 70 cm long and equally large in di-
ameter, with a central high-voltage plate; the two end plates carried the readout wires
and were at earth potential. The drift field E was 250 V/cm to yield a saturated drift
velocity of 7 cm/μs in an argon–methane gas mixture (80/20). A magnetic field of
0.9 T was oriented parallel to E. In order to protect the gas volume as much as pos-
sible from positive ions produced at the anode wires, a double layer of a monopolar
gating grid (see Sect. 9.2.1) was mounted at the entrance of the amplification region.
It was kept ‘closed’ until a trigger signal arrived.

Fig. 11.40 A perspective view
of the TRIUMF TPC
[BRY 83]. (1) Magnet iron;
(2) coil; (3) outer trigger
scintillators; (4) outer trigger
proportional counters; (5)
end-cap support frame; (6, 8)
field cage wires; (7) central
high-voltage plane; (9) inner
trigger scintillators; (10) inner
trigger proportional wire
chamber; (11) TPC end-cap
proportional wire modules
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11.8 Chambers with Extreme Accuracy

The accuracy of coordinate measurement is the crucial point of most drift cham-
bers. As we have discussed throughout this book, the essential parameters are those
itemized in Table 11.5. The choices open to the designer that correspond to these
parameters are quoted in the right-hand column of the table. We notice that some of
them represent conflicting requirements. For example, slow gas is not saturated at
practical electric fields, and reduced sense-wire distances cause larger wire bowing
owing to electrostatic forces that add to the gravitational sag. There are of course
all the other important boundary conditions of the particle experiment – interac-
tion rate, space available, radiation material tolerable, and, last but not least, cost –
which further restrict the choices to be made in the quest for the very best accuracy.
Therefore, it is a much harder goal to achieve good accuracy in a drift chamber that
is part of a particle experiment than in a test chamber built for a more specialized
investigation. The problems connected with small wire distances and mechanical
accuracy are obviously better solved in chambers with small dimensions. For these
reasons, the chambers that have reached extreme values of accuracy are small and
specialized.

A chamber containing xenon gas under a pressure of 20 atm was presented by
Baskakov et al. and is depicted in Fig. 11.41 [BAS 79]. It is the most precise drift
chamber known to us. Its two anode wires have no electrical amplifiers attached to
them but are viewed by two photomultipliers, which register the light pulse emitted

Table 11.5 Factors relevant for accuracy and corresponding choices of design parameters

Diffusion: Gas with low diffusion
Small drift length
Elevated gas pressure
Magnetic field

Drift-path variations: Reduced sense-wire distance
Focussing of drift trajectories
Drift-path restrictions

Ionization clustering: Elevated gas pressure
Time measurement: Fast electronics

Slow gas
Optimal estimator

Avalanche localization: Increased number of channels
Narrow avalanche
Accurate pulse-height measurement
Optimal estimator

Uniformity of drift velocity: Homogeneous electric field
No free charges in drift volume
Small field-wire distances
Mechanical accuracy
Saturated drift velocity

Knowledge of wire positions: Mechanical accuracy
Short wires
Controlled wire sag
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Fig. 11.41 Cross section of a drift chamber based on electroluminescence by Baskakov et al.
[BAS 79], which had two sense wires

by the avalanche. Drift chambers based on electroluminescence had previously been
studied by Charpak, Majewski and Sauli [CHA 75]; these are suitable for high par-
ticle rates because the emission of light in the high electric field of the anode wire is
so strong (especially at high gas pressure) that only little or no charge amplification
is necessary. However, large systems of such drift chambers have not yet been built.

With their chamber, Baskakov et al. were able to achieve an average accuracy of
18 μm on one wire over a sensitive drift length between 10 and 35 mm (16 μm at
20 mm). This accuracy comes mainly from the low drift velocity of 0.13 cm/μs and
the small diffusion at this pressure. The sensitive area was nearly 4×4 cm2.

Fig. 11.42a,b Precision drift chamber by Belau et al. [BEL 82]. (a) Wire configuration of three
cells; (b) spatial resolution of a single wire as a function of gas pressure
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A more conventional model is the precision chamber built by Belau et al. for
the recording of particles behind a target [BEL 82]. It operates with a gas mixture
of 75% propane and 25% ethylene at 4 atm pressure and presents a sensitive area
of 10 × 10cm2. The proportional wires (spaced 1.3 mm) are arranged in 6 hori-
zontal planes, the cathode wires in parallel planes, creating 12 drift spaces 8 mm
high and 50 mm deep, and one central insensitive space for a high-intensity beam
(Fig. 11.42a). The achieved accuracy was 23 μm per wire after eliminating or cali-
brating the inhomogeneous drift regions near the wires (18% of the volume). This
accuracy was obtained with a fast gas (drift velocity 5 cm/μs) and correspondingly
fast electronics (rise time 0.8 ns) on 60 channels. The mechanical accuracy is based
on ceramic spacers for the wires, ground to a precision of a few microns. The vari-
ation of the achieved measuring accuracy with gas pressure is seen in Fig. 11.42b.
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Chapter 12
Drift-Chamber Gases

Gas is the medium in which the processes of ionization, drift and amplification
develop. We have discussed these processes in previous parts of this book. Here we
want to present some additional practical information relevant to the choice of gas
mixtures and their pressure, and relevant to the impurities that can be tolerated in
the gas.

12.1 General Considerations Concerning the Choice
of Drift-Chamber Gases

There are many gas mixtures that are successfully used in drift chambers. The tables
in Chap. 11 contain a representative collection. Often we find the noble gas argon
mixed with some quenching organic molecular gas. But purely organic mixtures
are also in use. These gases fulfil the basic requirement that the electron lifetime is
sufficiently long and that a stable amplification process exists.

An important choice has to be made with regard to the drift velocity and its de-
pendence on the electric field. A highly preferable situation arises if the drift velocity
varies little with the field, for then the coordinate measurement is less dependent on
the unavoidable field gradients, and on the pressure and temperature variations of
the gas. This happens at the maximum of the velocity–field relation (‘saturated drift
velocity’). Figure 12.1 shows the drift velocity of argon–isobutane mixtures, which
have this desirable property over a relatively long range of E field.

At these high velocities – typically 5 cm/μs – a fast time measurement is a ne-
cessity. If one wants to relax this requirement, one can reduce the drift field, and the
drift velocity is no longer saturated, with the consequence that it depends on space
charge and other changes of the drift field, thus requiring very careful calibrations.

The ‘dilemma of the Lorentz angle’ comes into sight here (see Sect. 11.3.2). If
the electric and magnetic fields are orthogonal one may wish to achieve a small drift
velocity at a high E field in order to keep the Lorentz angle small, cf. (2.7), (2.11).

W. Blum et al., Particle Detection with Drift Chambers, 413
doi: 10.1007/978-3-540-76684-1 12, c© Springer-Verlag Berlin Heidelberg 2008



414 12 Drift-Chamber Gases

Fig. 12.1. Drift velocity as a function of the drift field, for various argon–isobutane mixtures
[BRE 74]

A high E field at small electron energy must be the goal in the interest of a
low diffusion width; cf. the discussion following (2.63). The last two requirements
combine well in the ‘cold’ gas mixtures based on carbon dioxide or dimethylether.
In these, the random electron velocities and the drift velocity are much lower than
in the ‘hot’ gases at the same field strength. The cold gases have the disadvantage
that an operating point must be found in the unsaturated situation. High E fields are
more difficult to handle, since spurious discharges are a threat to the reliability of a
chamber. High E fields also cause electrostatic wire displacements; these are larger
for greater wire lengths.

In order to give an overview of achievable diffusion limits we reproduce in
Fig. 12.2 the characteristic electron energies calculated by Paladino and Sadoulet
[PAL 75] for the pure gases Ar, CH4 and CO2, and for various argon–isobutane mix-
tures. The width of the diffusion after 1 cm of drift, calculated according to (2.63),
is shown in Fig. 12.3.

In TPCs, where the E and B fields are parallel, there is an advantage in having a
high value of ωτ , or a high product of the B field and the mobility (cf. Sect. 2.1).
One reason is the enormous suppression factor for the transverse diffusion constant
(2.72), another has to do with the track distortions caused by imperfections in the
uniformity of the magnetic field. Since in a good solenoid the inhomogeneities are
predominantly radial (not azimuthal), the distortions of the curvature of radial tracks
are suppressed by one power of ωτ; see (2.6).

Argon–methane mixtures with small CH4 concentrations can be used in the sat-
urated situation of the drift velocity, and there they exhibit large values of τ . It can
be seen in Table 11.4 that such gas mixtures have actually been chosen for all the
large TPCs.
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Fig. 12.2. Characteristic electron energies calculated and reported by [PAL 75]. (a) for various
mixtures of argon–isobutane; (b) argon, carbon dioxide and methane
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Fig. 12.3 Diffusion width after 1 cm of drift, according to (2.63), using calculated electron energies
[PAL 75]

12.2 Inflammable Gas Mixtures

Most of the quenching gases used in drift chambers can burn in air. Thus in large
systems they may represent a security risk. We would like to know under what
circumstances and in what concentrations they are dangerous.

A gas mixture that contains some oxygen is ‘inflammable’ if a flame can exist and
propagate in it. (Confusingly enough, this same mixture is also called ‘flammable’
in the field.) The fact is established in a standardized vertical tube with ignition
from below. Whether a flame develops or not depends on the nature of the gas com-
ponents, their temperature and pressure, and in particular on their concentrations.
By varying the concentrations of a gas mixture, one finds non-inflammable com-
binations whose content of combustible or oxygen is not enough to make a flame.
Therefore there are lower and upper limits of concentration which mark the region
of inflammability.

The simplest mixture is a two-component gas, e.g., methane in air. At normal
temperature and pressure it is inflammable between approx. 5 and 15% CH4 by
volume in the total, whilst the stoichiometric ratio for complete combustion is 9.5%.
There is no simple principle from which to derive such limits: they depend on details
of the flame dynamics. Let us note that these limits are markedly different when the
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flame proceeds with the ignition on top rather than at the bottom. The monograph
by Lewis and von Elbe [LEW 61] may be consulted concerning this subject. More
recent determinations of the limits of inflammability such as the ones conducted at
CERN [CER 96] resulted in more conservative limits. This ‘progress’ is achieved
by a new judgement about the development of the test flame, which may appear in a
variety of forms – from a flame that propagates clearly to the top end of the test tube
to flames that do not clearly detach from the spark or do so but burn out halfway up.
Also, one is now more careful about gas purity as even small contaminations may
influence the result. In Table 12.1 we present the classical inflammability limits as
well as the new limits from [CER 96] for comparison.

When an inert gas is added to the previous mixture, we have a three-component
mixture, e.g., methane, argon, and air. Now the inflammability limits also depend
on the argon concentration. If there is too much argon, then there will be no flame,
irrespective of the methane/air ratio. The three-component gas mixtures are con-
veniently described by the diagrams in Fig. 12.4: a particular mixture is given by
the three volume concentrations c1,c2, and c3 in the total mixture, which add up to
unity; they are represented by a point in the unilateral triangle whose three coordi-
nates are measured parallel to its sides (the sum of the three coordinates is always
equal to the length of one side).

Results of flame tests are now recorded in a diagram that delineates the region
of inflammability. Examples from measurements by the Physikalisch-Technische
Bundesanstalt, made at the request of CERN, are shown in Fig. 12.4.

Chamber gas does not contain oxygen, and inflammable mixtures will come
about by unintentional contact with air. A safe chamber gas is one that produces

Table 12.1 Limits of inflammability of some gases and vapours in air that are of interest for particle
detectors, from two different sources (vol. % of total mixture)

Compound Formula Limits of inflammability of gas or vapour

[LEW 61] [CER 96]

Lower Upper Lower Upper

Methane CH4 5.3 15.0 4.4 16.9
Ethane C2H6 3.0 12.5 2.4 14.6
Propane C3H8 2.2 9.5 1.8 10.4
Butane C4H10 1.9 8.5 1.4 8.9
Isobutane i-C4H10 1.8 8.4 1.55 8.4
Pentane C5H12 1.4 7.8
Isopentane i-C5H12 1.4 7.6
2,2-dimethylpropane C5H12 1.4 7.5
Hexane C6H14 1.2 7.5
Ethylene C2H4 3.1 32.0
Propylene C3H6 2.4 10.3
Methylalcohol CH3OH 7.3 36.0
Isopropylalcohol C3H7OH 2.0 12.0
Diethylether C4H10O 1.9 48.0
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Fig. 12.4a–d Diagrams to describe three-component gas mixtures by their volume concentrations
c1,c2 and c3 (see text). Limits of inflammability for four different mixtures containing air

a non-inflammable mixture with any amount of air. Looking, for example, at
Fig. 12.4a, we see that all the combinations of methane–argon–air concentrations
that have this property lie below the tangent that connects the region of inflamma-
bility with the point P (c1 = 0,c2 = 0, and c3 = 1). All mixtures with a fixed
concentration ratio c1/c2 lie on a straight line through P, which intersects the op-
posite side at the value c2 – the methane-argon mixture is safe in this sense if the
methane concentration is not greater than 9% (or 6%, see later). Some safe concen-
trations of combustible gases are listed in Table 12.2.

In Table 12.3 we also list the new limiting safe mixtures recognized by the CERN
safety code, which are based on the more recent measurements from [CER 96]. A
comparison of the last two columns indicates a very small difference between the
behaviour of butane with different impurities, surely not very important in practical
applications.

A special point of interest is the tip of the region of inflammability that belongs
to the smallest air concentration. One might expect that it always represents the
stoichiometric concentrations. But this is not so – it is often displaced from the stoi-
chiometric ratio towards lower concentrations of the component that has the higher
diffusion [LEW 61]. Here is one more hint that no simple theory will predict the
safe concentrations.
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Table 12.2 Standard limiting safe mixtures in air. A mixture of a combustible gas (component 1)
and an inert gas (component 2) is considered inflammable in air if, with a suitably chosen admixture
of air (component 3), the three-component mixture can be ignited. The table quotes concentrations
c1 of component 1 at and below which no admixture of air can make a flame. The corresponding
concentrations c2 are also given

Combustible c1(%) Inert gas c2(%) Referencea

gas

CH4 13/9 He 87/91 [BUR 48, ZAB 65]
i-C4H10 2.7 Ne 97.3 [SCH 92]
CH4 9 Ar 91 [BUR 48]
C2H6 2 Ar 98 [SCH 92]
n-C5H12 2 Ar 98 [SCH 92]
CH4 23 CO2 77 [BUR 48, ZAB 65]
C2H6 12 CO2 88 [BUR 48, ZAB 65]
C3H8 11 CO2 89 [BUR 48, ZAB 65]
n-C4H10 9.7 CO2 90.3 [BUR 48, ZAB 65]
i-C4H10 9.3 CO2 90.7 [BUR 48]
n-C5H12 7.5 CO2 92.5 [BUR 48, ZAB 65]
n-C6H14 6.6 CO2 93.4 [BUR 48, ZAB 65]

aWhere two references are given they are in agreement, except for CH4/He.

Inflammable gas mixtures have been used in numerous particle experiments. The
required safety precautions may be a burden on the operation of the experiment,
and it is advantageous to avoid such mixtures. However, for streamer chambers in
particular this does not seem to be possible, because most mixtures with the required
absorption power for the ultraviolet light are also inflammable. Special studies of
this problem have been undertaken by Benvenuti et al. [BEN 89] and several other
groups cited there.

Table 12.3 Official limiting safe mixtures between inflammable and inert gases in air, according to
[CER 96]. The table shows volume per cent of the inflammable gas in the total, below which the
two component mixture is considered non-inflammable

Inflammable gas (per cent purity)

Inert gas CH4 C2H6 C3H8 iC4H10 nC4H10 nC4H10
(% purity) (99.95) (99.4) (99.95) (99.5) (99.90) (99.5)

N2 (99.995) 9.9 4.94 4.25 4.1 3.55 3.26
CO2 (99.9) 22.45 9.09 7.95 7.95 6.52 6.45
He (99.996) 11.86 5.45 4.41 4.15 3.58 3.55
Ne (99.990) 9.2 4.37 3.45 3.26 2.74 2.70
Ar (99.996) 6.15 3.05 2.76 2.4 2.28 2.16
SF6 (99.90) 50.4 20.4 20.4 19.43 16.97
CF4 (99.7) 33.4 13.0 11.76 9.5 9.28 9.1
C2H2F4 (99.7) 11.98 7.14 6.7 5.75 5.8
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12.3 Gas Purity, and Some Practical Measurements
of Electron Attachment

Together with the gases intended to serve in a chamber, there will always be some
contamination, by impurities in the bottles delivered from industry, from outgassing
construction materials in the gas stream or produced in operation, or arriving from
the outside world through membranes that are not entirely tight.

Even minor contamination may have adverse effects on the chamber operation. It
can change the drift velocity (a drastic example is reported in Sect. 12.3.3), or they
may remove drifting electrons by attachment (see Sects. 12.3.1 and 12.3.2). They are
a cause of chamber ageing (Sect. 12.6). But they can also have a beneficial effect:
ionization tracks produced by pulsed UV lasers often depend on some unknown
molecular compound that happens to be in the chamber gas (cf. Sect. 12.4).

We have described in Chap. 2 various mechanisms of negative-ion formation
which may lead to a loss of electrons drifting through a chamber. It is chiefly by
varying the partial pressures of two clean gases that the two-body and three-body
processes can be experimentally distinguished. The values reported in Figs. 2.11 and
2.12a-d were obtained in this way, mostly by workers engaged in atomic-physics
research.

For the purposes of drift chambers it is not always necessary to isolate the exact
process or to know the electron energy. On the other hand one wants to have electron
attachment rates for the multi-component gas mixtures and for drift fields typical
for applications in particle experiments. We collect here some measurements of this
kind, keeping in mind that the detailed interpretation of the attachment process is
not always required.

12.3.1 Three-Body Attachment to O2, Mediated
by CH4, i-C4H10 and H2O

Electron loss rates were measured in various drift-chamber gases with additions of
oxygen, water or methanol, by Huk, Igo-Kemenes and Wagner [HUK 88].

Working initially at 4 bar with Ar (88%) + CH4 (10%) + i-C4H10 (2%) and with
O2 concentrations up to 440 ppm, they varied the total gas pressure and the hydro-
carbon and O2 concentrations. They were able to show that the measured electron
attenuation rate Rtot associated with oxygen could be understood as a superposition
of rates according to (2.77):

Rtot = ∑Ri ;

Ri = k(i)
1 N(O2)N(Xi) ,

where N(O2) is the O2 concentration and the N(Xi) are the concentrations of the
other gas components. (The rate proportional to the square of N(O2) is negligible at
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Table 12.4 Three-body electron attachment coefficients for O2 and third body CH4 determined
by [HUK 88] at fixed reduced drift fields E/P in drift-chamber gas composed of Ar(90%) +
CH4(10%) + O2 (200 ppm) and Ar(80%) + CH4(20%) + O2 (200 ppm)

E/P C(O2, CH4)
(V/cm bar) (μs−1 bar−2)

100 167 ± 32
138 191 ± 30
163 176 ± 20
200 149 ± 27
250 146 ± 26

these low O2 contaminations.) The various contributions could be separated, and the
three-body rate coefficients of CH4, i-C4H10 and Ar were determined for a practical
range of drift fields. The contribution of Ar was zero inside the errors, as expected.
The results are quoted in Tables 12.4 and 12.5. The coefficient C(O2, X), measured
in units of (μs−1 bar−2), is related to k1 of (2.77), measured in units of (cm6 s−1),
by the relation

C(O2,X) =
(

6.02×1020

22.4

)2(
bar−2

cm6

)
10−6 k1

at N.T.P.
It should be noted that the three-body rate coefficients C(O2, CH4) and C(O2,

i-C4H10) given in Tables 12.4 and 12.5 for specific values of the reduced electric
field represent averages over the electron energies in the range of the gas mixtures
used. For details the reader is referred to the article by Huk et al. [HUK 88], which
is also an excellent entry point to the literature.

The authors then investigated the influence of water and methanol. In the absence
of oxygen, neither 0.3% H2O nor 0.1% CH3OH in Ar(90%) + CH4(10%) caused
any electron absorption outside the errors. But the situation changed when a small
amount (200 ppm) of O2 was added to the argon–methane mixture. It turned out
that 0.1% of H2O is as efficient as 10% of CH4 to mediate electron attachment to
oxygen under the operating conditions investigated. 500 ppm of methanol did not
change the attachment rate to oxygen inside the errors.

Table 12.5 Three-body electron attachment coefficients as in Table 12.4, but for O2 and i-C4H10
in gas composed of Ar(90%) + CH4(10%) + O2 (200 ppm) + i-C4H10(0 to 4%)

E/P C(O2, i-C4H10)
(V/cm bar) (μs−1 bar−2)

100 3240 ± 350
138 2819 ± 300
163 2490 ± 300
200 1970 ± 300
250 1570 ± 250
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12.3.2 ‘Poisoning’ of the Gas by Construction Materials, Causing
Electron Attachment

A long lifetime of electrons, which is essential for the functioning of drift chambers
with long drift paths, is not yet guaranteed when the chamber has been filled with
extremely clean gas. The very material of the chamber itself and of its gas distribu-
tion system may contaminate the gas with electronegative (i.e. electron-absorbing)
impurities which emanate from the surface or the volume of these materials. As we
discussed in Sect. 2.2.7, the two-body attachment rates of some halogen-containing
compounds are so large that even at concentrations as low as 10−8 they will
absorb a sizeable fraction of the electrons that have to drift over a distance of
one metre.

In practice, every piece of material that will come into contact with the gas stream
of a long-drift chamber has to be controlled with respect to outgassing before it is
built in. Test facilities for this purpose have been in use at Berkeley, CERN and
probably other laboratories. Basically, a long drift tube is connected to a gas distri-
bution system which comprises a receptacle for the material in question. In Berkeley
the ‘poisoning time’ Tp was measured for which the test piece has to be in contact
with the 6 m3 of the TPC volume before the attenuation of electrons over 1 m of
drift increases by 1%. At CERN the results of the measurements were expressed in
terms of the percentage electron loss A over 1 m of drift after the test piece had been
in contact with 1 m3 of gas for 24 h.

The drift tubes were operated under the conditions of the large chamber that
was being built in the respective laboratory (PEP-4 TPC at Berkeley: Ar(80%) +
CH4(20%) at 10 bar; ALEPH TPC at CERN: Ar(90%) + CH4(10%) at 1 bar; cf.
Table 11.4). The results of these technical measurements cannot be directly com-
pared because the various contributing 2-body and 3-body attachment rates behave
differently with respect to gas composition, pressure and electric field.

The results of these tests are documented in two lists [BRO 79] and [LEH 89]
containing about a hundred items each. We present in Tables 12.6 and 12.7 some
examples in order to show that many common construction materials do not poison
the gas, whereas a number of other materials, especially certain cleaning agents,
paints and seals, have been found to be disastrous.

12.3.3 The Effect of Minor H2O Contamination
on the Drift Velocity

We present in Fig. 12.5 drift velocities for two argon–methane mixtures, typical
TPC gases, which in addition contain some very low concentrations of water vapour.
These measurements from the DELPHI group are basically in agreement with cal-
culations of Biagi [BIA 89] and of Schmidt [SCH 86]. Let us note that for some,
especially low, values of the electric field, one tenth of a per cent of water vapour
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Table 12.6 List of poisoning times Tp of some selected materials measured in the Berkeley Ma-
terials Test Chamber. Tp is the time it takes for one unit of the indicated material to increase the
attenuation rate of electrons travelling over a drift distance of 1 m by 1%, when in contact with
6 m3 of the gas mixture, which was Ar(80%) + CH4(20%) at 10 bar; the drift field was 1.5 kV/cm
[BRO 79]

Material Unit Tp (best estimate) Tp (lower limit)
(h) (h)

Epoxy Versamid 140 and Epon 826 1 m2 360 310
Teflon ‘TFE’ 1 m2 (1) 210
Etched copper-clad Kapton 1 m2 (1) 1500
Mylar 1 m2 (1) 680
G-10(Westinghouse) 1 m2 660 600
Tufftane polyuretane film 1 m2 (1) 910
Nylon connectors (3M) 1 piece 750 740
Glass-filled polyester connectors (Amp) 1 piece 160 75
Neoprene seal (Victaulic) 1 piece 100 99
White Nitrile seal (Victaulic) 1 piece 7.1 7
Tygon tubing (Xorton plastics R 3603) 1 ft 28 26
Spirex paint 1 m2 87 80

1. Data consistent with infinite Tp.

changes the drift velocity almost by a factor of 2. This drastic behaviour is due to
the properties of the water molecule with its static electric dipole moment, which
causes the inelastic scattering cross-section for low-energy electrons to be exceed-
ingly large, thus reducing the drift velocity according to (2.19).

Table 12.7 List of electron attenuations A caused by some selected materials in the ALEPH Ma-
terials Test Facility. A is the percentage electron loss over a drift distance of 1 m, caused by 1 m2

of the indicated material in contact for 24 h with 1 m3 of the gas mixture, which was Ar(90%)
+ CH4(10%) at 1 bar; the drift field was 110 V/cm. A has been scaled linearly from smaller test
pieces [LEH 89]

Material A (% m2) ±ΔA (%/ m2)

Aluminium plate 0.0 0.02
Mylar foil, 25 mm thick 0.00 0.005
Delrin (polyacetal/polyoxymethylen) (‘POM’) 0.25 0.10
Plexiglas (PMMA) 0.7 0.1
Stesalit with copper back plane, cleaned with 0.3 0.2

isopropyl-alcohol
Same, cleaned in ultrasonic bath containing freon ∼40
Same as above, 4 months later 20 5
HT anti-corona coating SL 1300 (Peters, Kempten) 40 15
HT anti-corona coating Plastic 70 (Kontakt-Chemie) 0.1 0.1
Natural rubber (cleaned in hot water, 70◦C, 2 h) 25 5
Viton vacuum seals (uncleaned) 70 20
Araldite AW 106 glue (1-week-old) 0.21 0.06
Same as above, but 5-weeks-old 0.06 0.03
Same as above, but 14-weeks-old 0.01 0.02
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Fig. 12.5a,b Drift velocities measured by [CAT 89] for two argon–methane mixtures containing
a small additional amount of water vapour. (a) Ar(91%) + CH4(9%); (b) Ar(80%) + CH4(20%).
The measurement errors are estimated to be 1% or less; the lines are drawn to connect the measured
points

12.4 Chemical Compounds Used for Laser Ionization

The most often employed technique of creating ionization tracks in the gas of a drift
chamber relies on the presence of molecules in the chamber gas that can be ion-
ized in a two-step process as discussed in Sect. 1.3. In many chambers the gas has
sufficient impurities, owing to the outgassing of materials or as remnants from the
production process. If the concentration is not large enough for the available laser
power, or if it is not stable, a suitable compound has to be added to the chamber gas.
We can look for candidates among the organic vapours with ionization potentials
below twice the laser photon energy. A good number of them are known to pro-
duce ionizable tracks, but definitive measurements of the second-order cross-section
equivalent (see Sect. 1.3.1) do not yet exist.
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Fig. 12.6 Measured ionization
density as a function of the
energy density of the laser at
λ = 266 nm in Ar + CH4
(uncleaned), doped with
5 ppm TMA, and with 2 ppm
TMPD. The slopes of the
curves are 1.99 ± 0.06 (Ar +
CH4), 1.9 ± 0.1 (TMA) and
1.9 ± 0.2 (TMPD)

A typical measurement is shown in Fig. 12.6 [HUB 85]. The ionization density
is seen to follow the quadratic dependence of the laser flux. In Tables 12.8 and 12.9
we present linear ionization densities achieved with single laser shots in various
vapours. Laser tracks imitating particle tracks can obviously be created with vapour
partial pressures in the range of 10−3 to 10−6 Torr and with laser power densities of
1 μJ/mm2. The reader is referred to a review article by Hilke [HIL 86] for further
discussion.

As we know from Sect. 1.3.1 and (1.93), the yield of one shot at a given energy
depends on the space and time structure of the laser pulse. Once these are determined

Table 12.8 Linear ionization densities achieved in various organic vapours with one shot of the N2
laser (λ = 337 nm, Eγ = 3.66 eV). The results are rescaled to a beam cross-section of 1 mm2, an
energy of 1 μJ, and a partial pressure of 10−3 Torr

Substance Ionization Vapour pressure Linear ionization Reference
potential at 20◦C density
(eV) (Torr) (el./cm)

α-naphthylamine 7.3 2.7 × 10−4 4 × 103 [GUS 84]
α-C10H7NH2

N,N-dimethylaniline 7.14 0.25 0.05 [LED 84]
(DMA) C6H5N (CH3)2

N,N-dipropylaniline 7.1 1.2 × 10−2 130 [GUS 84]
(DPA)C6H5N(C3H7)2

Diethyl ferrocene 6.6 5.4 × 10−2 10 [GUS 84]
N,N,N′,N′-tetramethyl- 6.18 2.3 × 10−3 7 × 104 [GUS 84]

p-phenylenediamine
(TMPD)
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Table 12.9 Linear ionization densities achieved in various organic vapours with one shot of the
frequency-quadrupled Nd: YAG laser (λ = 266 nm, Eγ = 4.64 eV). The results are rescaled to a
beam cross-section of 1 mm2, an energy of 1 μJ, and a partial pressure of 10−3 Torr

Substance Ionization Vapour pressure Linear ionization Reference
potential at 20◦C density
(eV) (Torr) (el./cm)

Toluene C7H8 8.82 22 7 × 103 [DRY 86]
Trimethylamine (TMA) 8.5; 7.82 – 60 [LED 85]

(CH3)3N 70 [HUB 85]
Phenol C6H5OH 8.51; 8.3 – >250 [HUB 86]
Naphthalene C10H8 8.12 – 500 [HUB 86]
Triethylamine (TEA) 7.5 50 200 [LED 85]

(CH3CH2)3N
N,N-dimethylaniline 7.14 0.25 104 [LED 85]

(DMA) C6H5N(CH3)2

N,N,N′,N’-tetramethyl- 6.18 2.3 × 10−3 4 × 104 [HUB 85]
p-phenylenediamine
(TMPD)

together with the ionization, definitive measurements of the second-order cross-
section will become possible. Not all ionizable substances are suitable for doping
the gas of a chamber. For example, the vapour tetrakis(dimethylamine)ethylene
(TMAE) is a highly ionizable agent because of its low ionization potential of 5.5 eV.
But it quickly deposits on metal surfaces, rendering them photosensitive, and it
is difficult to remove [LED 85]. The authors quoted in Tables 12.8 and 12.9 have
devoted much work to this problem of vapour sticking to the surfaces of their
chambers.

Another aspect of doping is the observation of deposits on the anode or cathode
of wires. Even modest concentrations of ionizable organic vapours may accelerate
the process of ‘ageing’. Such studies, made with the UA1 detector, are reported by
Beingessner et al. [BEI 88a]. The effects of ageing are discussed in more detail in
Sect. 12.6.

Finally, we mention that under conditions of heavy irradiation, Beingessner
et al. [BEI 88b] observe that tetramethyl-p-phenylenediamine (TMPD) vapour dis-
appears from the detector, presumably owing to charge transfer from the avalanche-
produced heavy ions that are in the drift region; when they have ionized and cracked
the TMPD molecules, the ionized TMPD molecules and crack products drift away
to the cathode.

12.5 Choice of the Gas Pressure

In the design of a drift chamber, one of the first important decisions must be taken
on the gas pressure, because it determines to a large extent the over-all construction.
The technical inconvenience of a pressure vessel and the increase of matter in the
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path of the particles are balanced to a certain degree by some advantages in the
measuring accuracy, and we want to review them here. We note in passing that the
wall thickness of a vessel must increase in proportion to the over-pressure it has
to hold.

We have stated in (2.85) that for the mobility tensor the electric and magnetic
fields scale with the gas density. One would therefore like to discuss the gas density
always in connection with the corresponding change of the electric and magnetic
field strengths, thus keeping the drift-velocity vector constant. But in practice an in-
crease of the relevant field strength is easy in the electric and difficult in the magnetic
case. Therefore, we proceed by specifying the magnetic field first, the gas density is
discussed next, and then the electric fields are adjusted accordingly. The gas density
is varied by changing the pressure, since one usually works at room temperature.

Let us consider the various consequences of a change of the gas pressure by a
factor p > 1, say from 1 bar to p bar. Table 12.10 contains a summary of the most
important effects.

12.5.1 Point-Measuring Accuracy

In measurement accuracy, insofar as it is limited by diffusion, one gains by increas-
ing the pressure – unless the limitation is in the diffusion transverse to the magnetic
field, and ωτ � 1. Therefore, we distinguish between the following:

(a) Longitudinal diffusion or ωτ 	 1: For the width of the diffusion cloud one
gains a factor l/

√
p (2.61, 63), and in the accuracy to find the centre of the

cloud one gains another factor 1/
√

p, because the statistical fluctuations vary
with 1/

√
Ntot, where Ntot is the total number of electrons in the diffusion cloud.

Therefore, the over-all gain is a factor 1/p.
(b) Transverse diffusion with ωτ � 1: For the width of the diffusion cloud one

loses a factor
√

p according to (2.61, 63, 72). The statistical fluctuations com-
pensate this; therefore, the over-all factor is 1.

The contributions to the measurement accuracy that arise from the driftpath varia-
tions have statistical fluctuations that vary with 1/

√
Neff (see (1.73) and Sect. 7.2.3).

As the pressure is increased, Neff increases as well, but only slowly. For the purpose
of the present estimates we take Neff proportional to

√
p (Figs. 1.22 and 1.23). The

situation would change where declustering occurred in any important measure. The
drift-path variations are partly due to the wire geometry, i.e. constant when p varies,
but partly they have a pressure dependence of their own. This is the case for the wire
E ×B effect. Here we refer to the angle at which the electrons approach the wires in
their immediate neighbourhood (Sect. 7.3.1). The tangent of the effective Lorentz
angle ψ will decrease roughly proportional to 1/p, as p increases. A smaller angle
ψ will reduce the drift-path variations. Depending on how important the wire E ×B
effect is in comparison to the other drift-path variations, we may say in summary
that the contributions to the measurement accuracy that arise from the drift-path
variations decrease as a function of p which is somewhere between 1/p and 1/p0.25.
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Table 12.10 Influence of the gas pressure on various parameters relevant for drift chambers. If the
gas pressure is changed by a factor p, then, in a first approximation, the particular parameter will
change by the factor indicated in the last column

Mean free path between collisions l0 1/p
Mean time between collisions (at constant τ0 1/p

electron energy)

Electron attachment:
2-body rate R2 p
3-body rate R3 p2

Diffusion constant:
without magnetic field D(0) 1/p
parallel to B DL(ω) 1/p
orthogonal to B(ωτ � 1) DT(ω) p
orthogonal to B(ωτ 	 1) DT(ω) 1/p

Electric and magnetic fields:
(adjustment for constant electron energy E p
and drift field) B p

Synchrotron radiation background:
rate of charge directly produced Bs p
by the radiation
amount of charge from the amplification Q 1
process in the volume at any given time
ratio of disturbing to ordinary drift field Es/E 1/p

Ionization:
mean distance between clusters λ 1/p
total ionization Ntot p
ionization effective for coordinate Neff ∼√

p

measurement
most probable ionization Imp p f (p)a

variance of most probable value Δ Imp p−0.32b

ratio between minimum and maximum IFermi/Imin decreasingc

velocity saturation point γ∗ 1/
√

p
Radiation effects (Coulomb scattering, Xrad 1/p

pair production, bremsstrahlung)
radiation length

a The increase does not follow a simple law because the atomic structure is involved, but it is
essentially proportional to p times a logarithmic term of p. A curve for argon is shown in Fig. 1.11.
b [ALL 80].
c See discussion in Chap. 10.

12.5.2 Lorentz Angle

Here we refer to the direction Ψ under which the electrons travel in the main drift
space. For a drift chamber of type 2 it is imperative to keep Ψ low. One way to
achieve this is to increase the gas pressure. For a first orientation it is enough to
work in the approximation of one electron energy. Referring to Sect. 2.2,
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tanΨ = ωτ .

Since ωτ = (e/m)B, at a given magnetic field one seeks a small τ . The mean time
between collisions is related to the density N and the collision cross-section σ by

τ =
1

Nσc
.

An increase of the density N by a factor p will reduce τ to τ/p if the electric field
E is also increased to E p, because the electron velocity c is a function of E/N and
then stays the same. In the presence of a constant and strong magnetic field B, this is
not strictly true because c is also a function of B/N, but the dependence is not very
strong, as can be seen from (2.49). In conclusion we may say that an increase of the
gas pressure and the electric field by a factor p reduces the tangent of the Lorentz
angle approximately by the same factor.

12.5.3 Drift-Field Distortions from Space Charge

In drift chambers with long drift distances like TPCs one always has to beware of the
adverse effect of any space charge that may exist in the drift volume. Such a charge
may arise from some background such as synchrotron radiation in e+e− colliders.
It will distort the uniform drift field. The effect of an increase of the gas pressure in
such a situation is the following.

The background Bs increases proportional to p, and since the wire gain G is
assumed to be adjusted to produce the same signal level as before, we have BsG
= constant. If the drift potential has been increased in proportion to the pressure,
the ion drift velocity remains the same, and the amount of positive ion charge that
flows back into the drift volume (assuming constant effectiveness of any ion shutter)
produces the same amount of total charge Q inside the drift volume as before. The
adverse electric field it creates there is the same, but relative to the increased drift
field it is smaller by the factor by which the pressure has been increased.

12.6 Deterioration of Chamber Performance
with Usage (‘Ageing’)

Drift and proportional chambers that have been in use for some time have a tendency
to malfunction sooner or later – an increase in the dark current, a lowering of the
gain, and a loss of pulse-height resolution are the typical symptoms. Once it has
started, the problem seems to become worse and to spread from a few wires to
many, until finally the chamber may no longer hold the operating voltage.

This behaviour is intimately associated with the gas mixture in the chamber
and with certain contaminants. However, the material properties of the anodes and
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cathodes as well as their size also play a role in this area which is far from being
clearly understood. Given the practical importance of the subject and that the new
accelerators will produce extremely high levels of radiation, efforts towards better
understanding are under way. Workshops held at Berkeley [WOR 86] and Hamburg
[WOR 01] summarized the experience. A comparison of the reports at the two pro-
ceedings shows that during the 15 years between them there was much progress
towards mastering the high particle fluxes of modern times. On the other hand, there
is still no fundamental understanding of ageing. Nobody can calculate the lifetime
of a chamber to be built, and in most cases one cannot even calculate what the re-
sult will be when some parameter is changed in a given chamber and its gas supply
system.

12.6.1 General Observations in Particle Experiments

The wires of degraded chambers carry deposits of various kinds, either as spots
or as complete coatings of the anode or cathode wires, smooth or hairy, white or
black or oily, in the region of the strongest exposure. One quantifies the lifetime
of a wire by adding up the charge that it has collected during its lifetime; it is
calculated as the total charge that has drifted towards it times the avalanche gain.
Lifetimes at which performance losses have been reported are in the range 10−4 −1
Coulomb per cm of wire length. It appears that the lower limit of 10−4C/cm has
become rather uncommon since the problems with the particular gas mixture con-
sisting of Ar (75%), isobutane (24.5%), and freon (0.5%) have become understood
[SAU 86]. (This mixture was employed in the very first proportional chamber sys-
tems and, among experts, went under the name ‘magic gas’; it was used for very high
avalanche gain factors beyond the proportional mode.) Most often, lifetimes are re-
ported to be above 10−2C/cm before deterioration sets in. With special precautions
such lifetimes may be extended by an order of magnitude or more. Table 12.11 con-
tains a collection of particle experiments with details about the behaviour of ageing
chambers and some special precautions.

12.6.2 Dark Currents

The build up of a dark current drawn by the anode wire of a deteriorated chamber
even in the absence of radiation can be explained by the ‘thin-field emission effect’,
or Malter effect [MAL 36]. In his experiment, Malter showed that a positive surface
charge deposited on a thin insulating film that covers a cathode can provoke the
emission of electrons from the cathode through the film. A very high electric field
may be created in the film between the deposited charge and the countercharges
accumulated on the metallic cathode on the opposite side. Electrons are extracted
from the metal through field emission and may find their way through the film into
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Table 12.11 Drift and proportional chambers exposed to high radiation doses – reports of some
accelerator experiments with high densities of accumulated charge

Chamber Reference Basic gas Additional Accumulated Observed
mixture measures charge density effectsa

(percentages) (concentrations (C/cm)
in %)

TASSO central [BIN 86] Ar(50) C2H5OH (1.6) 0.2–0.4 None
detector +C2H6(50) + oil in ethane

removed gas
filters inserted

TASSO vertex [BIN 86] Ar(95)+CO2(5) H2O(1) 0.25 Some
chamber +C2H5OH

(0.12)(3 bar)
Split field [ULL 86] Ar(53) – 0.3 Anode wire

magnet +i-C4H10(40) coating,
chambers +(CH2OH)2 thickness 1 μm

CH2(7)

ACCMOR drift [TUR 86] Ar(50) (CH3)2 0.02 None
chambers +C2H6(50) CHOH(0.2)

Ar(60)+C2H6

(40)

ARGUS drift [DAN 89] C3H8(97) H2O(0.2) 0.005 None
chamber +(CH2OH)2

CH2(3)
BNL hyper- [PIL 86] Ar(50) covering soft 0.2 None

nuclear spec- +C2H6(50) urethane
trometer adhesive
DC

FNAL tagged [EST 86] Ar(50) C2H5OH 0.1–0.2 Efficiency loss
photon spec- C2H6(50) wire cleaning
rometer

UA1 central [YVE 86] Ar(40) – 0.01 None
chamber +C2H6(60)

Argonne ZGS [SPI 86] Ar(65) new bubbler oil, 0.1–1 Efficiency loss,
beam chambers +CO2(35) new plastic tubes, deposits (Si)

+CBrF3 new wires on anodes,
(0.5) cathodes

EMC muon [HIL 86] Ar(79.5) – 0.15 Anode deposits,
chambers +CH4(19.5) efficiency loss

30%
after 0.25: End of

operation

J-Spectrometer, [BEC 92] [Ar+ – 0.1–1 Deposits on flat
BNL (1974), front (CH2OH)2 cathode,
proportional CH2](0◦C)b chambers
chambers still efficient

aAfter the additional measures
bArgon saturated with methylal at 0◦C
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the space between the anode and the cathode. In Malter’s experiment the positive
surface charges were produced by an external beam of particles; when this beam was
removed, the field emission was not immediately interrupted, but decayed slowly
because the surface charge took an appreciable time to leak away.

In a wire chamber, some thin insulating coating on the cathodes is charged up by
the positive ions that are produced in the avalanches and drift to the cathodes. The
surface charge density depends on the balance between the neutralisation rate and
the ion collection rate, the latter being proportional to the rate of charge multiplica-
tion on the anode. If the surface charge density increases above some critical value,
secondary electron emission from the cathode into the gas via the Malter effect be-
comes possible. The secondary electrons reach the anode and produce avalanches,
thus increasing the positive-ion production rate. If the secondary-electron emission
rate is sufficiently high, the process becomes self-sustaining and the dark current
remains, even if the source of the primary radiation is removed from the chamber.

If one stops the avalanches by turning down the anode voltage, the dark current
is obviously interrupted, but it does not immediately reappear when the anode volt-
age is subsequently turned up again. A certain intensity of radiation on the area in
question is required to reestablish the current.

An efficient way of preventing the development of cathode deposits is to keep
the electric field at the cathode surfaces low. Plane cathodes and wires with larger
diameters show smaller deposits.

In chambers with appreciable standing currents, the addition of a small amount of
water in the gas has often been found to suppress the currents [WOR 86, DAN 89].
An explanation is that the cathode deposits are made conductive so as to increase
the ion leakage rate through the insulating film. It is also generally known that small
amounts of alcohol have a tendency to prevent or delay the appearance of dark
currents.

Another cause of standing currents and of the breakdown of chambers is the so-
called whiskers, fine strands of material growing on the cathode or the anode. Glow
discharges may appear owing to the large fields they create.

The growth of whiskers is primarily a question of the gas composition. For ex-
ample, a change from the gas composition 1 (Ar(89%) + CO2(10%) + CH4(1%)) to
the similar gas composition 2 (Ar(90%) + CO2(5%) + CH4(5%)) produced whiskers
which grew from the cathode wires in the field direction, according to a test by the
JADE group [KAD 86]. Upon going back to composition 1, the whiskers shrank
and finally disappeared. In another test [FOS 86] it was shown that whisker growth
on cathode wires is supported by gas mixtures containing the lower alkanes, which
presumably form (CH2)n-type polymers. On the other hand, no mixtures of car-
bon dioxide and argon support whisker growth; rather they make existing whiskers
retreat and disappear. Table 12.12 summarises these tests, which were done under
the extreme conditions of glow discharge. Although such extreme conditions do not
usually apply to chambers that are working well, they may develop temporarily at
some imperfect spot in a chamber.

Let us add to this list of causes of dark currents the photoeffect discussed in
Sect. 4.1. Depending on the photoabsorption properties of the gas, photons emitted
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Table 12.12 Whisker growth measured in glow discharges produced on a cathode wire [FOS 86]

Gas mixture Whisker growth Comments
(percentages) allowed?

Argon (50) + ethane (50) Yes Whiskers grow down to
concentrations of ethane
of 5% or more

Argon (48) + ethane (48) Yes Growth is suppressed by adding
+ ethanol (4) ethanol

Argon (40) + ethane (40) Yes
+ carbon dioxide (20)

Argon + carbon dioxide No No mixture of Ar and CO2
supports whisker growth

Argon (70) + carbon No
dioxide(25) + ethanol (5)

Argon (90) + methane (10) Yes
Argon (95) + methane (5) Yes
Argon (50) + isobutane (50) Yes Threshold for whisker growth about
Argon (60) + isobutane (40) twice as high as with argon–ethane
Argon (92) + isobutane (8) mixtures

in an avalanche may create electrons in the gas or on the cathode which produce
new avalanches. Whether this feedback situation can lead to limited dark currents
depends on the presence of some damping mechanism.

12.6.3 Ageing Tests in the Lower-Flux Regime

The process of ageing has been investigated in numerous laboratory experiments.
With the help of intense radioactive sources, the ageing process occurs within
shorter periods of time. Although it is established that the measured fatal dose is
not independent of this intensity (it comes out larger at intensities that are too high
[VAV 86]), the method is useful for the comparison of different factors that influ-
ence the ageing process. A list complete up to 1985 is contained in [WOR 86]. Later
work may be followed by consulting [ATA 87] and [KAD 90].

A first line of investigation concerns the nature of the quenching agent, which,
either alone or in combination with a noble gas (typically Ar), would serve as the
counting gas. Perhaps some quenching agents age later than others? One often mea-
sures the spectrum of an Fe-55 source and observes its peak and width as functions
of the charge collected on the sense wires. Figure 12.7 shows the results of Turala
and co-workers [TUR 86]; the relative pulse height as well as the peak of the Fe-55
signal began to deteriorate at lifetimes (total charge collected) that were different by
an order of magnitude or more as isopentane was exchanged for carbon dioxide or
nitrogen.
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Fig. 12.7 Energy resolution and peak position of the 55Fe signal in various gas mixtures as functions
of the total collected charge, measured by [TUR 86]

It is generally reported that the addition of a small percentage of some alco-
hol (CH3CH2OH, (CH2OH)2CH2, (CH3)2CHOH) to the counting gas extends the
lifetime of chambers significantly, even if it does not prevent the development of
deposits.

Another line of enquiry starts from the observation that chemical elements found
in the wire deposits are occasionally foreign to the chemical compounds of the gas
or the wires. Silicon, a dominant signal in X-ray fluorescence or Auger-electron-
spectrometry analyses of some wire deposits could only have been contained in
the gas at the low concentrations that are permitted by the tight tolerances of the
gas-purity specifications. In addition there may have been some parts of the cham-
ber installation where silicon-containing compounds reached the gas at very low
vapour pressure. In one instance, some silicon oil present in the counting gas with
a vapour pressure of 10−9 Torr was observed to cause rapid growth of polymers
on the anode [HIL 86]. This implies a surprisingly high silicon collection efficiency
of the avalanche process. Could it be that other substances ‘poison’ the gas in a
similar manner? And if so, under what circumstances? In Fig. 12.8, the surpris-
ing results of a test performed by Kotthaus are depicted. The input gas stream of
argon–ethane was conducted through clean steel tubes; when the integrated col-
lected charge reached a certain value marked in the figure, a 10-m-long hose of soft
PVC was introduced into the input gas stream, resulting in an immediate deteriora-
tion of the test-tube performance, as measured by the pulse height and the resolution
of the Fe-55 spectrum. When the hose was removed, the performance did not return
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Fig. 12.8 Effect of a soft, 10-m-long, PVC gas hose. Dots (referring to the left-hand-side scale)
indicate the position of the 55Fe peak relative to the (unaged) reference position. The crosses (refer-
ring to the right-hand-side scale) show the width of the 55Fe distribution relative to its peak position
in the radiation damaged wire region. The lower drawn-out curve (referring to the right-hand scale)
represents the same quantity, but measured at the (unaged) reference position. The period of time
in which the PVC hose was put into the input gas stream is also indicated [KOT 86]

to its original values, but the loss of gain persisted. It is also remarkable that the
resolution changed quite significantly on a piece of wire that had not aged (outside
the area of exposure), but only when in the presence of the PVC hose. Such obser-
vations support the idea that the process of polymerisation, which later continues
on its own, is started by certain dangerous substances, in this case perhaps one of
the organic softening agents that are mixed into the PVC giving it its characteristic
odour. In his summary [VAV 86], Va’vra makes a list of contaminations that, accord-
ing to experience, should be avoided in order to achieve extended chamber lifetimes;
the list includes halogens, oil traces (also from bubblers), rubber (especially silicon
rubber), polyurethane adhesive, PVC and teflon tubing, soft epoxies and adhesives,
aggressive solder, any unknown organic materials, and large amounts of G10 (glass-
fibre-enforced material containing Si). Cold traps have a beneficial effect [HIL 86].

12.6.4 Ageing Tests in the High-Flux Regime

Here we refer to the new high-rate experiments (HERA-B, LHC-experiments) in
which the entire charge collected on the sense wires will probably go up to 10
Coulomb per cm of wire length or more, two or three orders of magnitude higher
than in the experiments of the previous generation. Here one comes into a new
regime of ageing.
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The consequences are clear: all hydrocarbons as quenchers are out of the ques-
tion because of their tendency to polymerise; compare Table 4.1 in which only CO2

is useable. Even the slightest contamination, especially of silicon compounds, has
to be excluded, requiring extremely clean gas supply systems and well-planned val-
idation tests for the materials of all components in contact with the gas. Lists of
materials and their outgassing rates exist [NASA], [BOU96], [CAP01].

At the high-charge doses studied, new phenomena became apparent and a new
quench gas, CF4, was introduced. Carbon tetrafluoride is non-flammable, non-
polymerising and in gas mixtures with a noble gas makes fast counters even at
moderate fields. The reaction products formed in avalanches are quite aggressive
towards materials such as electrodes and gas filters, but also against previously ex-
isting polymer deposits, which they seem to be able to remove. There are the two
competing processes caused by the radicals formed in avalanches: polymerisation
and etching. This competition was demonstrated in an experiment by Openshaw
et al. [OPE 91]. Working with a gas consisting of a mixture of CF4 and isobutane,
they were able to shift the balance between the two processes towards more poly-
merisation or towards more etching by changing the relative gas concentrations.

As a modern example we note the tubes of the ATLAS transition radiation tracker
(TRT) [AKE 03], which have perhaps the most heavily irradiated proportional coun-
ters among the modern experiments, as their sense wires will draw up to 0.15 μA/cm
of wire length, corresponding to approx. 10 C/cm in 10 years of LHC operation.
Based on the experience described above, the first prototypes were operated with a
gas containing CF4: 70%Xe + 20%CF4 + 10%CO2, the xenon being required for
the transition radiation photon conversion. The presence of CF4 proved in the end
to be too aggressive against some chamber components, notably glass. The com-
mercial price of xenon necessitates a closed gas circulation system. The group has
developed certification methods for cleaning components and has demonstrated that
the deterioration caused by the unavoidable presence of minute traces of silicon –

Fig. 12.9 Anode wire after only 0.08 C/cm accumulated charge. The deposits were caused by
traces of Si from a lubricant used in the early straw production; they lead to a gas gain drop of
about 30%
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Fig. 12.10 Surface of a wire observed after 0.5 C/cm of accumulated charge, for the TRT standard
gas (see text) with 1.2% of water and 1.5% of oxygen added. Amorphous deposits of WO are
observed on top of the gold-plated tungsten wire. An energy dispersive X-ray (EDX) spectrum
reveals the presence of tungsten and oxygen

an example is shown in Fig. 12.9 – can be healed by etching away the deposits, a
process which will occur automatically during the experiment.

High charge doses on the wire can cause a new phenomenon even more dis-
astrous than whisker growth: the gold plating on the tungsten wire may peel off
(Fig. 12.12) under the influence of gas components such as H2O or O2. Also the
wire may swell to twice its diameter forming tungsten oxide, (Fig. 12.10). Under
similar circumstances, crystalline tungsten oxide layers form deposits on the wire
(Fig. 12.11).

An excellent summary of the state of the art of ageing is the article the editors
of the DESY workshop [WOR 01] wrote for the IEEE Transactions on Nuclear
Science [TIT02].

Fig. 12.11 Surface of a wire carrying crystalline deposits of WO under experimental conditions
similar to those of Fig. 12.10
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Fig. 12.12 Various manifestations of damage to the gold-plating after 2-6 C/cm of accumulated
charge for diffferent current densities (1-4 μA/cm). No gold-plating damage was observed when
the water content was below 0.1%. All photographs from [AKE 03]
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The requirement to eliminate all hydrocarbons from the gas of proportional
chambers dedicated to very-high-rate experiments changes the situation in a drastic
way. Whereas previously we carefully optimised the gas properties by choosing the
right gas composition from a good variety of possible components, now there are
only a few left. Important gas properties such as the drift velocity and its depen-
dence on electric and magnetic fields, diffusion, Lorentz angle, quenching strength,
etc. (cf. Sects. 12.1, 12.5) must be taken as they come, if the chambers are to sur-
vive the high dose awaiting them in the new experiments. If, for example, the drift
velocity cannot be made insensitive to the electric field, any space charge in the drift
region will limit the measurement accuracy and open a new frontier for the control
and, perhaps, correction of such effects.

A thorough understanding of the ageing process must involve the chemical
processes in the plasma of the avalanches. There are certainly several competing
mechanisms at work; this is also apparent from the wide variety of manifestations
of the deposits as well as from the fact that drastically different element abundances
are measured in different spots along the wires [KOT 86].

At present we do not even know whether a better understanding of the plasma
polymerisation on our wires will give us the means to substantially prolong the
lifetime of the chambers. Thus for the time being we are left with a few rules –
to keep the gas and the wires extremely clean, to add some alcohol or water if
necessary, and to keep the cathode wires thick. Since it is the total collected charge
which destroys the wire, it is useful to keep the amplification low.
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AC coupling, 198, 209, 210
Accuracy in magnetic field

angular variation, 269
Accuracy of curvature, 298, 304

improvement with wire spacing, 302
track through scattering medium, 310

Admittance matrix, 166
Ageing, 429–439

contaminants to be avoided, 435
effect of a soft tube, 435
total collected charge, 430

Ageing experience (table), 431
Ageing tests

high flux regime, 435–439
low flux regime, 433–435

ALTRO chip, 247
Amplification factor (gain) of proportional

wire, 132–138, see also Avalanches
and gas density, 136
and sense wire voltage, 136
and space charge, 142–144
local variations, 138–144
statistical variations, 145–154

Amplifier
charge, 192
current, 182, 192
integration time of, 199
linear, 181
operational, 182
peaking time of, 192
sensitivity of, 192
voltage, 182, 192

Angular pad effect, 264
Arrival time

average of many electrons, 272
diffusion, 275
drift path variations, 254, 273

of the Mth electron, 272
ASDBLR frontend, 246
ATLAS CSC frontend, 247
ATLAS muon drift chamber, 386
ATLAS muon spectrometer, 387
ATLAS transition radiation tracker TRT, 436
Avalanche force on the wire, 279
Avalanches, 126, see also Amplification factor

(gain)
fluctuations measured with laser tracks, 152
in electronegative gases, 147
in strong homogeneous fields, 149
in strong non-uniform fields, 151
in weak fields, 145
lateral extent, 130
role of photons, 126

Axial stereo chambers, 377
Axial wire chambers, 366, 377

Ballistic deficit, 193, 199
Bandwidth limit, 192

unipolar and bipolar shaper, 197
Baseline shift and fluctuation, 206–211
Bethe-Bloch formula, 29

modified, 32
Blanc’s law, 61
Bloch–Bradbury process, 76
Bragg’s additivity rule, 31

Campbell’s theorem, 207, 209, 218
Capacitance, 160

drift tube, 170
electrode, 168

Capacitance matrix, 158
calculation of, 168

Cathode charge distribution, 176
Cathode deposits, 432

443
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Cathode radius
equivalent, 175
tube, 163

Cathode signal, 164, 176
Central-limit theorem of statistics, 145
Cerenkov radiation, 26
Chambers without field shaping electrodes,

375
Characteristic energy of electrons, 69
Charge

induced, 161
interpolation of cathode, 179

Charge measurement
electronics for, 234

Charge transfer, 426
Charpak chamber, 362
Cluster counting, 345
Cluster size fluctuations

influence on resolution, 257–261
Cluster-size distribution, 15–18

role of large clusters, 21
Cold gas, 69, 414
Constant charge density in volume, 142
Convolution, 183, 184, 186, 188, 198
Coordinate measurement

accuracy depending on drift length, 263
accuracy in drift direction, 270–277
accuracy in wire direction, 261–270
accuracy of single wire, 253–261

influence of cluster fluctuations
(appendix), 282–288

contribution of several wires, 265
different methods, 251
fundamental limits of accuracy Chap. 7,

251–288
in the wire direction, 368
using pads, 268

CR filter, 187
delta response of, 188
transfer function of, 187

Cross induced signal, 174
Cylindrical drift chambers of type 2, 377–397

Dark currents, 430
DC coupling, 198, 210
Declustering through diffusion, 260, 269, 288
Delta response, 185–187

bipolar and unipolar shaper, 195
CR and RC filter, 188
infinite cusp, 233
Pole-zero filter, 191

Density effect for energy loss, 32
Diethorn formula, 134
Diethorn parameters measured, 136

Diffusion, 67–75
electric anisotropy, 70
limits achievable, 414
magnetic anisotropy, 72, 83

measurement of, 89
measurements, 83
width, 69
widths after 1 cm of drift, 416

Diffusion constant, 67–70
isotropic, 83

Diffusion tensor, 74
Discriminator, 236
Dissociative attachment, 76
Drift cells, 380–383, 393–397
Drift chamber gases Chap. 12, 413–439
Drift Chap. 2, 49, 94
Drift direction, 49
Drift field by electric charges on insulator, 375
Drift field distortions from space charge, 315
Drift tubes, 98–104

perfect, 99
Drift velocity, 49–67, 81–94

and minor H2O contamination, 422
in crossed fields, 92
in electromagnetic field, 64–67, 82
of electrons, 53–56
of ions, 56–63

Effective number of electrons, 35, 37
definition, 36
measurement, 37

Effective number of electrons Ne f f , 257
analytic expression, 287
diffusion dependence, 260, 288

measurement, 269
Einstein formula for diffusion, 69
Electric charge in the drift region, 315
Electroluminescence, 408
Electron attachment, 75–79

three–body attachment processes, 76–79
two–body attachment process, 76

Electron attachment and construction material,
422

Electron energy, 54, 68, 415
dependence on electric field, 70, 87

Electron velocity distribution, 79
in magnetic field, 82

Electrostatic wire stability, 104
Energy loss, 9

and dielectric constant, 10
density dependence, 29
density effect, 32
logarithmic divergence, 15

cut-off, 32–34
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most probable, 34
plateau, 26
relativistic rise, 26
restricted, 32
sample length dependence, 30
velocity dependence, 24, 28

Energy loss dE/dx, see also Ionization
Energy transfer, 14
Equilibrium velocity in electron drift, 54
Equivalent input noise

cathode channel, 225
definition of, 224
transmission line channel, 230
wire channel, 231

Equivalent noise charge (ENC)
cathode channel, 227
definition of, 226
transmission line channel, 230
wire channel, 231

Error propagation into track parameters, 292
Existing Drift Chambers Chap. 11, 361–409
External particle identifier, 404
Extrapolation to a vertex, 302–306
Extreme accuracy, 407

Fermi plateau, see plateau
Field cage

electrode configuration, 120
irregularities, 121
non-linear resistor chain, 121
one wrong resistor, 123

Field cages, 118–124
Field correcting strips, 139
Field wires, 97
First operational drift chamber system, 363
First Townsend coefficient, 133
Flame tests, 417
Free dielectric surfaces, 119

Gain drop
measured in background radiation, 144
near chamber edge, 138

Gain variation
due to mechanical imperfections, 141
with atmospheric pressure, 138

Gas
inflammable mixtures, 416–419

Gas choice, general considerations, 413
Gas pressure

and drift field distortions from space charge,
429

and electric and magnetic fields, 83, 427
and point measuring accuracy, 427
choice of, 426–429

influence on various parameters (table), 428
Gas purity and electron attachment, 420–423
Gating grid, 112–118

asynchronous trigger, 320
bipolar, 319
bipolar in magnetic field, 319
calculation of transparency, 113–117
condition of full transparency, 113
effect on spatial resolution, 328
electron transparency, 117, 320, 327, 328
monopolar, 318
setting the potential, 118
synchronous trigger, 320
transparency under various conditions,

320–328
Geiger mode, 130
Geometrical types 1, 2 and 3 of drift chambers,

361
Gravitational wire sag, 101

electrostatic amplification, 103
maximum stresses in some wire materials,

102
measurement through oscillation, 103

H2O contamination and effect on drift velocity,
422

High track densities, 388
History of drift chambers, 362–365
Hot gas, 414

Impedance
amplifier input, 211, 224
cathode channel, 225
chamber, 217
circuit element, 185
noise of a passive, 220
transmission line channel, 229
voltage and current amplifier, 192
voltage buffer input, 191
wire channel, 231

Impedance matrix, 166
Inflammability

and UV absorption power, 419
limits of concentration, 416, 417

Input circuit, 211
Intermediate excited states, 3
Ion drift in gas mixtures, 59
Ion Gates Chap. 9, 315–328

and limitation of space charge, 315
and wire chamber ageing, 318

Ion mobilities, 60, 62
in gas mixtures, 61

Ionization, see also Energy loss dE/dx
average, 21
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average energy to produce 1 ion pair, 4, 6
by laser rays, 38

chemical compounds used for, 38
corrections to measurement, 347
cross-sections, 1, 3
curve, 334
different mechanisms, 3
distributions, 19
estimator for strength, 338

max. likelihood meth., 338
truncated mean, 338

increase by adding compound, 6
measured pulse height distributions, 25
measurement

accuracy, 339–344
statistical treatment, 337

most probable, 18
number of collisions per cm of track, 2
of electrons to that of pions at 15 GeV/c, 336
primary and secondary, 3
pulseheight distributions

widths, 20, 343
retarded, 7

Ionization amplification Chap. 4, 125–154
Ionization potentials, 6
Isotropic diffusion coefficient, 83

Jesse effect, 4
Jet chamber geometry, 381
Jitter, 237

Kirchhoff’s law, 184
Knock-on electrons

range of, 7, 8

Landau distribution, 22, 23, 34
Langevin equation, 49
Laplace and Fourier Transform

relations for, 184
Laplace and Fourier transform, 183
Large cylindrical drift chambers, performance

of some (tables), 378
Laser ionization

dependence on chemical compounds in the
gas, 38, 424–426

dependence on wavelength, 42
Laser-beam optics, 44

diffraction limitation, 45
Heisenberg’s uncertainty principle, applied

to, 45
Liouville’s theorem applied to, 44
minimum width, 46
phase space diagrams, 44

Left-right ambiguity, 368

Light-tracks simulating particle tracks, 46
Limited streamer, 128
Linear signal processing, 183
Lorentz angle, 367, 413

Magnet spectrometer, typical, 365
Magnetic spectrometer resolution, 311

multiple scattering dominating, 312
Main drift chambers, 366
Malter effect, 430
Maxwell distribution of electron velocities, 80
Mean excitation energy, 29
Mean time between collisions, 54
Metastable state (in ionization), 4
Mobility

of electrons, 50
of ions, 57

Mobility tensor, 50, 82
Momentum resolution in spectrometer, 311

limit of multiple scattering, 312
Multiwire proportional chamber, 361
Muon chambers of L3 experiment, 373

n-th order cross-section equivalent, 38
Nernst–Townsend formula, 69
Noise, 213–234

amplifier, 222
chamber+amplifier, 223
equivalent input, 224
Flicker or 1/f, 221
linear network, 215
parallel and series, 222
passive impedance, 220
power spectrum of, 214
shot, 218
thermal or Johnson, 219
white, 215
zero crossing frequency of, 215

Noise corner time constant, 227, 233
Norton’s theorem, 216

Optimal tracking procedure, 310
Optimum filter, 231, 239

Pad dimension, choice of, 268
Pad response function, 178
Parseval’s theorem, 184
Particle identification Chap. 10

momentum ranges in argon, 334
Particle identification Chap. 10, 331–358

principles, 331–334
Particle mass determination, 331
Particle separation
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Performance achieved in existing detectors,
349–358

Particle separation power, 333, 344
PASA frontend, 247
Peaking time

definition of, 192
optimum, 238, 240

delta signal, 227
wire chamber signal, 229

tail cancellation and, 203
unipolar and bipolar shaper, 196

Penning effect, 4
Photo-absorption ionization (PAI) model, 11

applications, 335, 340
Photo-ionization cross-section, 12
Pileup of signals, 205
Planar drift chambers of type 1, 368–377
Planar drift chambers of type 1, performance

of some (tables), 370
Plasma frequency for optical dispersion, 27
Plateau of the energy loss, 27

and density of the medium, 27
Poisoning of the gas by construction material,

422
Poisoning times (table), 423
Pole-zero filter, 187

delta response of, 203
tail cancellation with a, 201, 202
transfer function of, 189

Polya functions, 152
Precision drift chamber, 408
Proportional wire, 125–128

Quench gases, 128

Radial drift field chamber, 403
Ramo’s theorem, 160
Ramsauer minimum, 55, 86
Random pulses on wire, 279
Random velocity of drifting electrons, 54
Random velocity of drifting ions, 57
Range of delta rays, 33
Range of primary electrons, 7, 8
RC filter, 187

delta response of, 188
transfer function of, 187

Reciprocity theorem, 158
Reduced electric and magnetic fields, 83
Regime of proportionality, 126
Relativistic rise of energy loss

dependence on gas density, 29, 335
dependence on sample length, 336, 340

Relaxation techniques for electrostatic
calculations, 98

Resolution formula, 341, 343
Rutherford scattering, 15

Safe chamber gas, 418
Safe gas mixtures (tables), 419
Sagitta measuring error, 298
Sagitta of a track, 298
Saturated drift velocity, 413
Secondary electron tracks, 14
Sensitivity

definition of, 192
unipolar and bipolar shaper, 196

Shape of the ionization curve, 334–336
5-parameter form, 336

Shaping, unipolar and bipolar, 195–200, 210
Signal induction, 157–179

cathode strip, 176
current, 160
drift tube, 163
electron, 164
ion, 163, 165
multiwire chamber, 172
principle of, 157
sum of, 161
voltage, 165

Signal to noise ratio, 232
Slope to noise ratio, 238
Small drift chambers of type 2, performance of

some (tables), 391
Space charge fluctuations, 281–282
Spiral projection chamber, 403
Spread of arrival times of electrons, 252
Spread of electrons along the wire, 252
Stability of a linear system, 187
Staggering of sense wires, 368, 380
Step function, 188
Stereo chambers, 377
Sternheimer correction to Bethe-Bloch

formula, 32
Stoichiometric ratio for complete combustion,

416
Streamer charge distribution, 129
Strength of the ionization, 332

Tail cancellation, 200–205
Thevenin’s theorem, 216
Thin-field emission effect, 430
Three-body attachment coefficients, 78, 421
Three-body attachment to O2, 420–421
Three-component gas mixtures (diagrams),

418
Time constant t0, characteristic, 163, 173
Time measurement

electronics for, 235
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Time walk, 240
Tonks’ theorem, 52
Townsend (unit), 56
TPC concept, 364
TPC field configuration, 111
TPC’s, performance of some (tables), 400
Track parameters

covariance matrix, 300, 303, 305
loss of accuracy due to magn. field, 300
quadratic fit, 294
straight line fit, 292

Track parameters Chap. 8, 291–313
Transfer function, 185–187

Zero-pole and Pole-zero filter, 189
cascaded elements, 191
CR and RC filter, 189
optimum filter, 233, 235, 239
poles and zeros of, 185
unipolar and bipolar shaper, 195, 196

Truncated mean for ionization measurement,
338

Two-body attachment rate constant, 76
Two-photon ionization, 39

rate equations for, 39–41, 43
Type 1 drift chambers, 361, 368–377
Type 2 drift chambers, 364, 377–397
Type 3 drift chambers (TPC’s), 364, 397–406

UA1 central drift chamber, 384

Van der Waals unstable molecules, 78
Vertex chambers, 366, 390–397

W-values, 4, 24
Weighting field, 161

drift tube, 163
multiwire chamber, 173
time dependent, 171

Weighting potential, 161
Whiskers on electrodes, 432

growth measured (table), 433
Wire E ×B effect, 261
Wire deposits, 430
Wire direction and magnetic field, 366
Wire excitation by avalanches, 279
Wire grids, 105–112

capacitance matrix, 109
superposition, 108
surface charge density, 113

Wire positioning error, 99
Wire pulse heights, 151
Wire signal, 163, 173
Wire vibrations, 277–280

Yule-Furry law, 147

Z-chambers, 377
Zero-pole filter, 187

transfer function of, 189
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